Wind turbine upgrades have recently been spreading in the wind energy industry for optimizing the efficiency of the wind kinetic energy conversion. These interventions have material and labor costs; therefore, it is fundamental to estimate the production improvement realistically. Furthermore, the retrofitting of the wind turbines sited in complex environments might exacerbate the stress conditions to which those are subjected and consequently might affect the residual life. In this work, a two-step upgrade on a multimegawatt wind turbine is considered from a wind farm sited in complex terrain. First, vortex generators and passive flow control devices have been installed. Second, the management of the revolutions per minute has been optimized. In this work, a general method is formulated for assessing the wind turbine power upgrades using operational data. The method is based on the study of the residuals between the measured power output and a judicious model of the power output itself, before and after the upgrade. Therefore, properly selecting the model is fundamental. For this reason, an automatic feature selection algorithm is adopted, based on the stepwise multivariate regression. This allows identifying the most meaningful input variables for a multivariate linear model whose target is the power of the upgraded wind turbine. For the test case of interest, the adopted upgrade is estimated to increase the annual energy production to 2.6 ± 0.1%. The aerodynamic and control upgrades are estimated to be 1.8% and 0.8%, respectively, of the production improvement.

References

1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Bossanyi
,
E.
, and
King
,
J.
,
2012
, “
Improving Wind Farm Output Predictability by Means of a Soft Cut-Out Strategy
,”
European Wind Energy Conference and Exhibition (EWEC 2012)
, Copenhagen, Denmark, Apr. 16–19.
3.
Petrović
,
V.
, and
Bottasso
,
C. L.
,
2014
, “
Wind Turbine Optimal Control During Storms
,”
J. Phys.
,
524
, p.
012052
.https://core.ac.uk/download/pdf/55248280.pdf
4.
Zhu
,
X.
,
Hu
,
L.
,
Chen
,
J.
,
Shen
,
X.
, and
Du
,
Z.
,
2018
, “
Calculation of Collection Efficiency on NREL Phase VI Blade
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071202
.
5.
IEC
,
2005
, “
Power Performance Measurements of Electricity Producing Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Report No. 61400-12.
6.
Lee
,
G.
,
Ding
,
Y.
,
Xie
,
L.
, and
Genton
,
M. G.
,
2015
, “
A Kernel Plus Method for Quantifying Wind Turbine Performance Upgrades
,”
Wind Energy
,
18
(
7
), pp.
1207
1219
.
7.
Hwangbo
,
H.
,
Ding
,
Y.
,
Eisele
,
O.
,
Weinzierl
,
G.
,
Lang
,
U.
, and
Pechlivanoglou
,
G.
,
2017
, “
Quantifying the Effect of Vortex Generator Installation on Wind Power Production: An Academia-Industry Case Study
,”
Renewable Energy
,
113
, pp.
1589
1597
.
8.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
Wind Turbine Power Curve Upgrades
,”
Energies
,
11
(
5
), p.
1300
.
9.
Franco
,
J. A.
,
Jauregui
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
10.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
11.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
12.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
A SCADA Data Mining Method for Precision Assessment of Performance Enhancement From Aerodynamic Optimization of Wind Turbine Blades
,”
J. Phys.
,
1037
, p.
032001
.http://iopscience.iop.org/article/10.1088/1742-6596/1037/3/032001
13.
Castellani
,
F.
,
Astolfi
,
D.
,
Burlando
,
M.
, and
Terzi
,
L.
,
2015
, “
Numerical Modelling for Wind Farm Operational Assessment in Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
320
329
.
14.
Castellani
,
F.
,
Astolfi
,
D.
,
Mana
,
M.
,
Piccioni
,
E.
,
Becchetti
,
M.
, and
Terzi
,
L.
,
2017
, “
Investigation of Terrain and Wake Effects on the Performance of Wind Farms in Complex Terrain Using Numerical and Experimental Data
,”
Wind Energy
,
20
(
7
), pp.
1277
1289
.
15.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031001
.
16.
Øye
,
S.
,
1995
, “
The Effect of Vortex Generators on the Performance of the ELKRAFT 1000 kW Turbine
,”
Ninth IEA Symposium on Aerodynamics of Wind Turbines
, Stockholm, Sweden, Dec. 11–12, pp.
0590
8809
.
17.
Mueller-Vahl
,
H.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2012
, “
Vortex Generators for Wind Turbine Blades: A Combined Wind Tunnel and Wind Turbine Parametric Study
,”
ASME
Paper No. GT2012-69197.
18.
Gao
,
L.
,
Zhang
,
H.
,
Liu
,
Y.
, and
Han
,
S.
,
2015
, “
Effects of Vortex Generators on a Blunt Trailing-Edge Airfoil for Wind Turbines
,”
Renewable Energy
,
76
, pp.
303
311
.
19.
Fernandez-Gamiz
,
U.
,
Zulueta
,
E.
,
Boyano
,
A.
,
Ansoategui
,
I.
, and
Uriarte
,
I.
,
2017
, “
Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices
,”
Energies
,
10
(
6
), p.
742
.
20.
Barlas
,
T. K.
, and
Van Kuik
,
G.
,
2010
, “
Review of State of the Art in Smart Rotor Control Research for Wind Turbines
,”
Prog. Aerosp. Sci.
,
46
(
1
), pp.
1
27
.
21.
Tsai
,
K.-C.
,
Pan
,
C.-T.
,
Cooperman
,
A. M.
,
Johnson
,
S. J.
, and
Van Dam
,
C.
,
2015
, “
An Innovative Design of a Microtab Deployment Mechanism for Active Aerodynamic Load Control
,”
Energies
,
8
(
6
), pp.
5885
5897
.
22.
Fernández-Gámiz
,
U.
,
Marika Velte
,
C.
,
Réthoré
,
P.-E.
,
Sørensen
,
N. N.
, and
Egusquiza
,
E.
,
2016
, “
Testing of Self-Similarity and Helical Symmetry in Vortex Generator Flow Simulations
,”
Wind Energy
,
19
(
6
), pp.
1043
1052
.
23.
Aramendia
,
I.
,
Fernandez-Gamiz
,
U.
,
Ramos-Hernanz
,
J. A.
,
Sancho
,
J.
,
Lopez-Guede
,
J. M.
, and
Zulueta
,
E.
,
2017
, “
Flow Control Devices for Wind Turbines
,”
Energy Harvesting and Energy Efficiency
,
Springer
,
New York
, pp.
629
655
.
24.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Effects From Complex Terrain on Wind-Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051205
.
25.
Rodrigo
,
J. S.
,
Gancarski
,
P.
,
Arroyo
,
R. C.
,
Moriarty
,
P.
,
Chuchfield
,
M.
,
Naughton
,
J. W.
,
Hansen
,
K. S.
,
Machefaux
,
E.
,
Koblitz
,
T.
,
Maguire
,
E.
,
Castellani
,
F.
,
Terzi
,
L.
,
Breton
,
S.-P.
,
Ueda
,
Y.
,
Prospathopoulos
,
J.
,
Oxley
,
G. S.
,
Peralta
,
C.
,
Zhang
,
X.
, and
Witha
,
B.
,
2014
, “
IEA-Task 31 WAKEBENCH: Towards a Protocol for Wind Farm Flow Model Evaluation. Part 1: Flow-Over-Terrain Models
,”
J. Phys.
,
524
, p.
012105
.
26.
Astolfi
,
D.
,
Castellani
,
F.
,
Lombardi
,
A.
, and
Terzi
,
L.
,
2019
, “
About the Extension of Wind Turbine Power Curve in the High Wind Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
014501
.
27.
Pope
,
P.
, and
Webster
,
J.
,
1972
, “
The Use of an F-Statistic in Stepwise Regression Procedures
,”
Technometrics
,
14
(
2
), pp.
327
340
.
28.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “
Cross-Validation
,”
Encyclopedia of Database Systems
,
Springer
,
New York
, pp.
532
538
.
29.
Wagner
,
R.
,
Cañadillas
,
B.
,
Clifton
,
A.
,
Feeney
,
S.
,
Nygaard
,
N.
,
Poodt
,
M.
,
St Martin
,
C.
,
Tüxen
,
E.
, and
Wagenaar
,
J.
,
2014
, “
Rotor Equivalent Wind Speed for Power Curve Measurement: Comparative Exercise for IEA Wind Annex 32
,”
J. Phys.
,
524
, p.
012108
.
You do not currently have access to this content.