In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.

References

1.
Esteban
,
M. D.
,
Diez
,
J. J.
,
López
,
J. S.
, and
Negro
,
V.
,
2011
, “
Why Offshore Wind Energy?
,”
Renew. Energy
,
36
(
2
), pp.
444
450
.
2.
Tavner
,
P.
,
2012
,
Offshore Wind Turbines: Reliability: Availability and Maintenance
,
The Institution of Engineering and Technology
,
London
.
3.
Fox
,
A. D.
,
Desholm
,
M.
,
Kahlert
,
J.
,
Christensen
,
T. K.
, and
Krag Petersen
,
I. B.
,
2006
, “
Information Needs to Support Environmental Impact Assessment of the Effects of European Marine Offshore Wind Farms on Birds
,”
Ibis
,
148
(
Suppl. 1
), pp.
129
144
.
4.
Mason
,
K.
,
2004
, “
Carbon/Glass Hybrids Used in Composite Wind Turbine Rotor Blade Design
,”
Compos. Technol.
(epub).https://www.compositesworld.com/articles/carbonglass-hybrids-used-in-composite-wind-turbine-rotor-blade-design
5.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
6.
Port of Esbjerg Magazine
,
2015
, “Sky's the limit?,” Port of Esbjerg Magazine, News, accessed Jan. 2, 2019, http://portesbjerg.dk/en/about/news/skys-limit
7.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
Saifaoui
,
D.
,
El Moumen
,
A.
,
Hassoon
,
O. H.
, and
Benyahia
,
H.
,
2018
, “
Evaluation of Durability of Composite Materials Applied to Renewable Marine Energy: Case of Ducted Tidal Turbine
,”
Energy Rep.
,
4
, pp.
31
40
.
8.
Tarfaoui
,
M.
,
Nachtane
,
M.
,
Khadimallah
,
H.
, and
Saifaoui
,
D.
,
2017
, “
Simulation of Mechanical Behaviour and Damage of a Large Composite Wind Turbine Blade Under Critical Loads
,”
Appl. Compos. Mater.
,
25
(
2
), pp.
237
254
.
9.
Tarfaoui
,
M.
,
Khadimallah
,
H.
,
Imad
,
A.
, and
Pradillon
,
J. Y.
,
2012
, “
Design and Finite Element Modal Analysis of 48m Composite Wind Turbine Blade
,”
Appl. Mech. Mater.
,
146
, pp.
170
184
.
10.
Shah
,
O. R.
, and
Tarfaoui
,
M.
,
2017
, “
Determination of Mode I & II Strain Energy Release Rates in Composite Foam Core Sandwiches: An Experimental Study of the Composite Foam Core Interfacial Fracture Resistance
,”
Composites, Part B
,
111
, pp.
134
142
.
11.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
12.
Tarfaoui
,
M.
, and
Shah
,
O. R.
,
2013
, “
Spar Shape Optimization of a Multi-Megawatt Composite Wind Turbine Blade: Modal Analysis
,”
Recent Advances in Composite Materials for Wind Turbines Blades
, Open Access - AMSA, pp.
93
104
.
13.
GWEC,
2017
, “Global Statistics,” Global Wind Energy Council, accessed Jan. 8, 2019, http://gwec.net/global-figures/graphs/
14.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
15.
Franco
,
J. A.
,
Jauregui
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
16.
Advanced Materials,
2011
, “
Advanced Materials: S-2 Glass® Fibre
,” accessed Jan. 1, 2019, https://www.agy.com/wp-content/uploads/2014/03/Advanced_Materials_Brochure-Technical.pdf.
17.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
, and
Saifaoui
,
D.
,
2016
, “
Numerical Investigation of Damage Progressive in Composite Tidal Turbine for Renewable Marine Energy
,”
International Renewable and Sustainable Energy Conference
(
IRSEC
), Marrakech, Morocco, Nov. 14–17, pp.
559
563
.
18.
Yamada
,
S. E.
, and
Sun
,
C. T.
,
1978
, “
Analysis of Laminate Strength and Its Distribution
,”
J. Compos. Mater.
,
12
(
3
), pp.
275
284
.
19.
Berggreen
,
C.
,
Simonsen
,
B. C.
, and
Borum
,
K. K.
,
2007
, “
Experimental and Numerical Study of Interface Crack Propagation in Foam-Cored Sandwich Beams
,”
J. Compos. Materi.
,
41
(
4
), pp.
493
520
.
20.
Griffin
,
D. A.
, and
Zuteck
,
M. D.
,
2001
, “
Scaling of Composite Wind Turbine Blades for Rotors of 80 to 120 Meter Diameter
,”
ASME J. Solar Energy Eng.
,
123
(
4
), pp.
310
318
.
21.
McKittrick
,
L. R.
,
Cairns
,
D. S.
,
Mandell
,
J.
,
Combs
,
D. C.
,
Rabern
,
D. A.
, and
Van Luchene
,
R. D.
,
2001
, “Analysis of a Composite Blade Design for the AOC 15/50 Wind Turbine Using a Finite Element Model,”
Sandia National Laboratories
, Albuquerque, NM, Contractor Report No. SAND2001-1441.
22.
Griffin
,
D. A.
,
2002
, “Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades,”
Sandia National Laboratories
, Albuquerque, NM, Paper No. SAND-1879.
23.
Knill
,
T. J.
,
2005
, “
The Application of Aeroelastic Analysis Output Load Distributions to Finite Element Models of Wind
,”
Wind Eng.
,
29
(
2
), pp.
153
168
.
24.
Forcier
,
L. C.
, and
Joncas
,
S.
,
2012
, “
Development of a Structural Optimization Strategy for the Design of Next Generation Large Thermoplastic Wind Turbine Blades
,”
Struct. Multidiscip. Optim.
,
45
(
6
), pp.
889
906
.
25.
Veers
,
P. S.
,
Ashwill
,
T. D.
,
Sutherland
,
H. J.
,
Laird
,
D. L.
,
Lobitz
,
D. W.
,
Griffin
,
D. A.
, and
Miravete
,
A.
,
2003
, “
Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades
,”
Wind Energy
,
6
(
3
), pp.
245
259
.
26.
Hillmer
,
B.
,
Borstelmann
,
T.
,
Schaffarczyk
,
P. A.
, and
Dannenberg
,
L.
,
2007
, “
Aerodynamic and Structural Design of Multi MW Wind Turbine Blades Beyond 5 MW
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012002
.
27.
Committee Draft
,
2015
, “Appendix II,” IEC 61400–3, accessed Jan. 8, 2019, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118900116.app2
28.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
Saifaoui
,
D.
, and
Hilmi
,
K.
,
2017
, “
Hygrothermal and Mechanical Performance Evaluation of Glass-Polyester Composite for Renewable Marine Energies
,”
13ème Congrès de Mécanique (CMM2017)
, Mekens, Morocco, Apr. 11–14.
29.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
, and
Saifaoui
,
D.
,
2017
, “
Damage Prediction of Horizontal Axis Marine Current Turbines Under Hydrodynamic, Hydrostatic and Impacts Loads
,”
Compos. Struct.
,
170
, pp.
146
157
.
You do not currently have access to this content.