The present study explores the impact of ethanol on the performance and emission characteristics of a single cylinder indirect injection (IDI) Diesel engine fueled with Diesel–kerosene blends. Five percent ethanol is added to Diesel–kerosene blends in volumetric proportion. Ethanol addition to Diesel–kerosene blends significantly improved the brake thermal efficiency (BTE), brake specific energy consumption (BSEC), oxides of nitrogen (NOx), total hydrocarbon (THC), and carbon monoxide (CO) emission of the engine. Based on engine experimental data, an artificial neural network (ANN) model is formulated to accurately map the input (load, kerosene volume percentage, ethanol volume percentage) and output (BTE, BSEC, NOx, THC, CO) relationships. A (3-6-5) topology with Levenberg–Marquardt feed-forward back propagation (trainlm) is found to be optimal network than other training algorithms for predicting input and output relationship with acceptable error. The mean square error (MSE) of 0.000225, mean absolute percentage error (MAPE) of 2.88%, and regression coefficient (R) of 0.99893 are obtained from the developed model. The study also attempts to make clear the application of fuzzy-based analysis to optimize the network topology of ANN model.

References

1.
EIA
,
2017
, “
United States Energy Information Administration Report
,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/
2.
British Petroleum
,
2014
, “
BP Statistical Review of World Energy. BP Annual Review
,” British Petroleum, London, http://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/BP-statistical-review-of-world-energy-2014-full-report.pdf
3.
Yadav
,
S. R.
,
Murthy
,
V.
,
Mishra
,
D.
, and
Baral
,
B.
,
2005
, “
Estimation of Petrol and Diesel Adulteration With Kerosene and Assessment of Usefulness of Selected Automobile Fuel Quality Test Parameters
,”
Int. J. Environ. Sci. Technol.
,
1
(
4
), pp.
253
255
.
4.
Ziegler
,
K.
, and
Manka
,
J.
,
2000
, “
The Effect of Mixing Diesel Fuels Additized With Kerosene and Cloud Point Depressants
,”
SAE
Technical Paper No. 2000-01-2884.
5.
Patil
,
K. R.
, and
Thipse
,
S. S.
,
2015
, “
Experimental Investigation of CI Engine Combustion, Performance and Emissions in DEE–Kerosene–Diesel Blends of High DEE Concentration
,”
Energy Convers. Manage.
,
89
, pp.
396
408
.
6.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
An Experimental Study of the Performance, Combustion and Emission Characteristics of a CI Engine Under Dual Fuel Mode Using CNG and Oxygenated Pilot Fuel Blends
,”
Energy
,
86
, pp.
560
573
.
7.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Debroy
,
D.
,
2015
, “
Study of Performance and Emission Characteristics of a Single Cylinder CI Engine Using Diethyl Ether and Ethanol Blends
,”
J. Energy Inst.
,
88
(
1
), pp.
1
10
.
8.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2014
, “
Effect of Diethyl Ether and Ethanol on Performance, Combustion, and Emission of Single-Cylinder Compression Ignition Engine
,”
Int. J. Ambient Energy
,
38
(
1
), pp.
2
13
.
9.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Banerjee
,
R.
,
2013
, “
An Experimental Investigation of Performance-Emission Trade Off of a CI Engine Fueled by Diesel–Compressed Natural Gas (CNG) Combination and Diesel–Ethanol Blends With CNG Enrichment
,”
Energy
,
55
, pp.
787
802
.
10.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
A Performance-Emission Trade Off Study of a CI Engine Fueled by Compressed Natural Gas (CNG)/Diesel–Ethanol-PPME Blend Combination
,”
Environ. Prog. Sustainable Energy
,
35
(
2
), pp.
517
530
.
11.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
A Performance-Emission Trade Off Study of a CI Engine Under Dual Fuel Mode Using CNG as Primary Fuel and Different Blends of Diesel–Ethanol–Biodiesel as Pilot Fuel
,”
Energy Fuels
,
29
(
4
), pp.
2394
2407
.
12.
Huang
,
J.
,
Wang
,
Y.
,
Li
,
S.
,
Roskilly
,
A. P.
,
Yu
,
H.
, and
Li
,
H.
,
2009
, “
Experimental Investigation on the Performance and Emissions of a Diesel Engine Fuelled With Ethanol–Diesel Blends
,”
Appl. Therm. Eng.
,
29
(11–12), pp.
2484
2490
.
13.
Ahmed
,
I.
,
2001
, “
Oxygenated Diesel: Emissions and Performance Characteristics of Ethanol-Diesel Blends in CI Engines
,”
SAE
Technical Paper No. 2001-01-2475.
14.
Lapuerta
,
M.
,
Armas
,
O.
, and
Herreros
,
J. M.
,
2008
, “
Emissions From a Diesel Bioethanol Blend in an Automotive Diesel Engine
,”
Fuel
,
87
(
1
), pp.
25
31
.
15.
Hardenberg
,
H.
, and
Schaefer
,
A.
,
1981
, “
The Use of Ethanol as a Fuel for Compression Ignition Engines
,”
SAE
Technical Paper No. 811211.
16.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-Out Responses for a Light-Duty Diesel Engine Fuelled With Biodiesel Blends
,”
Appl. Energy
,
92
(
0306–2619
), pp.
769
777
.
17.
Roy
,
S.
,
Banerjee
,
R.
, and
Bose
,
P. K.
,
2014
, “
Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled With EGR Using Artificial Neural Network
,”
Appl. Energy
,
119
, pp.
330
340
.
18.
Taghavifar
,
H.
,
Taghavifar
,
H.
,
Mardani
,
A.
, and
Mohebbi
,
A.
,
2014
, “
Exhaust Emissions Prognostication for DI Diesel Group-Hole Injectors Using a Supervised Artificial Neural Network Approach
,”
Fuel
,
125
, pp.
81
89
.
19.
Javed
,
S.
,
Murthy
,
Y. V. V. S.
,
Baig
,
R. U.
, and
Rao
,
D. P.
,
2015
, “
Development of ANN Model for Prediction of Performance and Emission Characteristics of Hydrogen Dual Fueled Diesel Engine With Jatropha Methyl Ester Biodiesel Blends
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
549
557
.
20.
Kiani
,
M. K. D.
,
Tavakoli
,
T.
,
Nikbakht
,
A. M.
, and
Najafi
,
G.
,
2010
, “
Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol-Gasoline Blends
,”
Energy
,
35
(
1
), pp.
65
69
.
21.
Kapusuz
,
M.
,
Ozcan
,
H.
, and
Yamin
,
J. A.
,
2015
, “
Research of Performance on a Spark Ignition Engine Fueled by Alcohol–Gasoline Blends Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
91
, pp.
525
534
.
22.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renewable Energy
,
34
(
4
), pp.
976
982
.
23.
Shivakumar
,
Pai
,
P. S.
, and
Rao
,
B. R. S.
,
2011
, “
Artificial Neural Network Based Prediction of Performance and Emission Characteristics of a Variable Compression Ratio CI Engine Using WCO as a Biodiesel at Different Injection Timings
,”
Appl. Energy
,
88
(
7
), pp.
2344
2354
.
24.
Rezaei
,
J.
,
Shahbakhti
,
M.
,
Bahri
,
B.
, and
Aziz
,
A. A.
,
2015
, “
Performance Prediction of HCCI Engines With Oxygenated Fuels Using Artificial Neural Networks
,”
Appl. Energy
,
138
, pp.
460
473
.
25.
Rinaldini
,
C. A.
,
Mattarelli
,
E.
,
Savioli
,
T.
,
Cantore
,
G.
,
Garbero
,
M.
, and
Bologna
,
A.
,
2016
, “
Performance, Emission and Combustion Characteristics of a IDI Engine Running on Waste Plastic Oil
,”
Fuel
,
183
, pp.
292
303
.
26.
Hossain
,
A. K.
,
Ouadi
,
M.
,
Siddiqui
,
S. U.
,
Yang
,
Y.
,
Brammer
,
J.
,
Hornung
,
A.
,
Kay
,
M.
, and
Davies
,
P. A.
,
2013
, “
Experimental Investigation of Performance, Emission and Combustion Characteristics of an Indirect Injection Multi-Cylinder CI Engine Fuelled by Blends of De-Inking Sludge Pyrolysis Oil With Biodiesel
,”
Fuel
,
105
, pp.
135
142
.
27.
Sahin
,
Z.
,
Durgun
,
O.
, and
Bayram
,
C.
,
2012
, “
Experimental Investigation of Gasoline Fumigation in a Turbocharged IDI Diesel Engine
,”
Fuel
,
95
, pp.
113
121
.
28.
Leevijit
,
T.
, and
Prateepchaikul
,
G.
,
2011
, “
Comparative Performance and Emissions of IDI-Turbo Automobile Diesel Engine Operated Using Degummed, Deacidified Mixed Crude Palm Oil–Diesel Blends
,”
Fuel
,
90
(
4
), pp.
1487
1491
.
29.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
012601
.
30.
Oğuz
,
H.
,
Sarıtas
,
I.
, and
Baydan
,
H. E.
,
2014
, “
Prediction of Diesel Engine Performance Using Biofuels With Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6579
6586
.
31.
Hassoun
,
M. H.
,
2008
,
Fundamentals of Artificial Neural Networks
,
PHI Learning Private Limited
,
New Delhi, India
.
32.
Filho
,
A. O. B.
,
Barros
,
A. K. D.
,
Labidi
,
S.
,
Viegas
,
I. M. A.
,
Marques
,
D. B.
,
Romariz
,
A. R. S.
,
Sousa
,
R. M. D.
,
Marques
,
A. L. B.
, and
Marques
,
E. P.
,
2015
, “
Application of Artificial Neural Networks to Predict Viscosity, Iodine Value and Induction Period of Biodiesel Focused on the Study of Oxidative Stability
,”
Fuel
,
145
, pp.
127
135
.
33.
Cay
,
Y.
,
Cicek
,
A.
,
Kara
,
F.
, and
Sagiroglu
,
S.
,
2012
, “
Prediction of Engine Performance for an Alternative Fuel Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
37
, pp.
217
225
.
34.
Yusaf
,
T. F.
,
Buttsworth
,
D. R.
,
Saleh
,
K. H.
, and
Yousif
,
B. F.
,
2010
, “
CNG-Diesel Engine Performance and Exhaust Emission Analysis With the Aid of Artificial Neural Network
,”
Appl. Energy
,
87
(
5
), pp.
1661
1669
.
35.
Najafi
,
G.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Buttsworth
,
D. R.
,
Yusaf
,
T. F.
, and
Faizollahnejad
,
M.
,
2009
, “
Performance and Exhaust Emissions of a Gasoline Engine With Ethanol Blended Gasoline Fuels Using Artificial Neural Network
,”
Appl. Energy
,
86
(
5
), pp.
630
639
.
36.
Chakraborty
,
A.
,
Roy
,
S.
, and
Banerjee
,
R.
,
2016
, “
An Experimental Based ANN Approach in Mapping Performance-Emission Characteristics of a Diesel Engine Operating in Dual-Fuel Mode With LPG
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
15
30
.
37.
Roy
,
S.
,
Banerjee
,
R.
,
Das
,
A. K.
, and
Bose
,
P. K.
,
2014
, “
Development of an ANN Based System Identification Tool to Estimate the Performance-Emission Characteristics of a CRDI Assisted CNG Dual Fuel Diesel Engine
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
147
158
.
38.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
39.
Bose
,
P. K.
,
Deb
,
M.
,
Banerjee
,
R.
, and
Majumder
,
A.
,
2013
, “
Multi Objective Optimization of Performance Parameters of a Single Cylinder Diesel Engine Running With Hydrogen Using a Taguchi-Fuzzy Based Approach
,”
Energy
,
63
, pp.
375
386
.
40.
Deb
,
M.
,
Majumder
,
A.
,
Banerjee
,
R.
,
Sastry
,
G. R. K.
, and
Bose
,
P. K.
,
2014
, “
A Taguchi-Fuzzy Based Multi-Objective Optimization Study on the Soot-NOx-BTHE Characteristics of an Existing CI Engine Under Dual Fuel Operation With Hydrogen
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20276
20293
.
You do not currently have access to this content.