This research developed a viable and economical foaming formula (AOS/AVS/N70K-T) which is capable of creating ample and robust CO2 foams. Its foaming ability and displacement performance in a porous medium were investigated and compared with the two conventional formulations (AOS alone and AOS/HPAM). The results showed that the proposed formula could significantly improve the foam stability without greatly affecting the foaming ability, with a salinity level of 20,000 ppm and a temperature of 323 K. Furthermore, AOS/AVS/N70K-T foams exhibited thickening advantages over the other formulations, especially where the foam quality was located around the transition zone. This novel formulation also showed remarkable blocking ability in the resistance factor (RF) test, which was attributed to the pronounced synergy between AVS and N70K-T. Last but not the least, it was found that the tertiary oil recovery of the CO2 foams induced by AOS/AVS/N70K-T was 12.5% higher than that of AOS foams and 6.8% higher than that of AOS/HPAM foams at 323 K and 1500 psi, thus indicating its huge enhanced oil recovery (EOR) potential. Through systematic research, it is felt that the novel foaming formulation might be considered as a promising and practical candidate for CO2 foam flooding in the future.

References

1.
Todd Hoffman
,
B.
, and
Shoaib
,
S.
,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
.
2.
Wood
,
D. J.
,
Lake
,
L. W.
,
Johns
,
R. T.
, and
Nunez
,
V.
,
2008
, “
A Screening Model for CO2 Flooding and Storage in Gulf Coast Reservoirs Based on Dimensionless Groups
,”
SPE Reservoir Eval. Eng.
,
11
(
3
), pp.
513
520
.
3.
Martin
,
D. F.
, and
Taber
,
J. J.
,
1992
, “
Carbon Dioxide Flooding
,”
J. Pet. Technol.
,
44
(
4
), pp.
396
400
.
4.
Carpenter
,
C.
,
2014
, “
Development of Small-Molecule CO2 Thickeners
,”
J. Pet. Technol.
,
66
(
7
), pp.
145
147
.
5.
Guo
,
X.
,
Du
,
Z.
, and
Sun
,
L.
,
2006
, “
Optimization of Tertiary Water-Alternate-CO2 Flood in Jilin Oil Field of China: Laboratory and Simulation Studies
,”
SPE Paper No. 99616-MS
.
6.
Holm
,
L. W.
,
1982
, “
CO2 Flooding: Its Time Has Come
,”
J. Pet. Technol.
,
34
(
12
), pp.
2739
2745
.
7.
Hild
,
G. P.
, and
Wackowski
,
R. K.
,
1999
, “
Reservoir Polymer Gel Treatments to Improve Miscible CO2 Flood
,”
SPE Reservoir Eval. Eng.
,
2
(
2
), pp.
196
204
.
8.
Akinnikawe
,
O.
,
Chaudhary
,
A.
,
Vasquez
,
O.
,
Enih
,
C.
, and
Ehlig-Economides
,
C. A.
,
2013
, “
Increasing CO2-Storage Efficiency Through a CO2/Brine-Displacement Approach
,”
SPE J.
,
18
(
4
), pp.
743
751
.
9.
Olabode
,
A.
, and
Radonjic
,
M.
,
2014
, “
Shale Caprock/Acidic Brine Interaction in Underground CO2 Storage
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042901
.
10.
Daneshfar
,
J.
,
Hughes
,
R. H.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO2 Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
.
11.
Heller
,
J. P.
,
Dandge
,
D. K.
,
Card
,
R. J.
, and
Donaruma
,
L. G.
,
1985
, “
Direct Thickeners for Mobility Control of CO2 Floods
,”
Soc. Petrol. Eng. J.
,
25
(
5
), pp.
679
686
.
12.
Rogers
,
J. D.
, and
Grigg
,
R. B.
,
2001
, “
A Literature Analysis of the WAG Injectivity Abnormalities in the CO2 Process
,”
SPE Reservoir Eval. Eng.
,
4
(
5
), pp.
375
386
.
13.
Birarda
,
G. S.
,
Dilger
,
C. W.
, and
McIntosh
,
I.
,
1990
, “
Re-Evaluation of the Miscible WAG Flood in the Caroline Field, Alberta
,”
SPE Reservoir Eng.
,
5
(
4
), pp.
453
458
.
14.
Ren
,
G.
,
Zhang
,
H.
, and
Nguyen
,
Q.
,
2013
, “
Effect of Surfactant Partitioning on Mobility Control During Carbon-Dioxide Flooding
,”
SPE J.
,
18
(
4
), pp.
752
765
.
15.
Eastoe
,
J.
,
Paul
,
A.
,
Nave
,
S.
,
Steytler
,
D. C.
,
Robinson
,
B. H.
,
Rumsey
,
E.
,
Thorpe
,
M.
, and
Heenan
,
R. K.
,
2001
, “
Micellization of Hydrocarbon Surfactants in Supercritical Carbon Dioxide
,”
J. Am. Chem. Soc.
,
123
(
5
), pp.
988
989
.
16.
Zanganeh
,
M. N.
,
2011
, “
Simulation and Optimization of Foam EOR Processes
,”
Ph.D. dissertation
, Delft University of Technology, Delft, South Holland, The Netherlands.
17.
Kutay
,
S. M.
, and
Schramm
,
L. L.
,
2004
, “
Structure/Performance Relationships for Surfactant and Polymer Stabilized Foams in Porous Media
,”
J. Can. Pet. Technol.
,
43
(
2
), pp.
19
28
.
18.
Khatib
,
Z. I.
,
Hirasaki
,
G. J.
, and
Falls
,
A. H.
,
1988
, “
Effects of Capillary Pressure on Coalescence and Phase Mobility in Foams Flowing Through Porous Medium
,”
SPE Reservoir Eng.
,
3
(
03
), pp.
919
926
.
19.
Worthen
,
A.
,
Bryant
,
S.
,
Huh
,
C.
, and
Johnston
,
K. P.
,
2013
Carbon Dioxide-in-Water Foams Stabilized With Nanoparticles and Surfactant Acting in Synergy
,”
AIChE J.
,
59
(
9
), pp.
3490
3501
.
20.
Adkins
,
S. S.
,
Gohil
,
D.
,
Dickson
,
J. L.
,
Webber
,
S. E.
, and
Johnston
,
K. P.
,
2007
, “
Water-in-Carbon Dioxide Emulsions Stabilized With Hydrophobic Silica Particles
,”
R. Soc. Chem.
,
9
(
48
), pp.
6333
6343
.
21.
Duan
,
M.
,
Hu
,
X.
,
Ren
,
D.
, and
Guo
,
H.
,
2004
, “
Studies on Foam Stability by the Actions of Hydrophobically Modified Polyacrylamides
,”
Colloid Polym. Sci.
,
282
(
11
), pp.
1292
1296
.
22.
Monsalve
,
A.
, and
Schechter
,
R. S.
,
1984
, “
The Stability of Foams: The Stability of Foams: Dependence of Observation on the Bubble Size Distribution
,”
J. Colloid Interface Sci.
,
97
(
2
), pp.
327
335
.
23.
Sett
,
S.
,
Sahu
,
R. P.
,
Pelot
,
D. D.
, and
Yarin
,
A. L.
,
2014
, “
Enhanced Foamability of Sodium Dodecyl Sulfate Surfactant Mixed With Superspreader Trisiloxane-(Poly) Ethoxylate
,”
Langmuir
,
30
(
49
), pp.
14765
14775
.
24.
Ma
,
K.
,
Lopez-Salinas
,
J. L.
,
Puerto
,
M. C.
,
Miller
,
C. A.
,
Biswal
,
S. L.
, and
Hirasaki
,
G. J.
,
2013
, “
Estimation of Parameters for the Simulation of Foam Flow Through Porous Media. Part 1: The Dry-Out Effect
,”
Energy Fuels
,
27
(
5
), pp.
2363
2375
.
You do not currently have access to this content.