Heavy duty gas turbines are the core components in the integrated gasification combined cycle (IGCC) system. Different from the conventional fuel for gas turbine such as natural gas and light diesel, the combustible component acquired from the IGCC system is hydrogen-rich syngas fuel. It is important to modify the original gas turbine combustor or redesign a new combustor for syngas application since the fuel properties are featured with the wide range hydrogen and carbon monoxide mixture. First, one heavy duty gas turbine combustor which adopts natural gas and light diesel was selected as the original type. The redesign work mainly focused on the combustor head and nozzle arrangements. This paper investigated two feasible combustor arrangements for the syngas utilization including single nozzle and multiple nozzles. Numerical simulations are conducted to compare the flow field, temperature field, composition distributions, and overall performance of the two schemes. The obtained results show that the flow structure of the multiple nozzles scheme is better and the temperature distribution inside the combustor is more uniform, and the total pressure recovery is higher than the single nozzle scheme. Through the full scale test rig verification, the combustor redesign with multiple nozzles scheme is acceptable under middle and high pressure combustion test conditions. Besides, the numerical computations generally match with the experimental results.

References

1.
Bannister
,
R. L.
,
Newby
,
R. A.
, and
Yang
,
W. C.
,
1998
, “
Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
267
283
.
2.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
.
3.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flash Back, Autoignition and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.
4.
Sanusi
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2014
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Non-Premixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.
5.
Davis
,
L. B.
, and
Black
,
S. H.
,
1999
, “
Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines
,” Report No. GE Power Systems_GER-3568G.
6.
Feigl
,
M.
,
Setzer
,
F.
,
Varela
,
R. F.
,
Myers
,
G.
, and
Sweet
,
B.
,
2005
, “
Field Test Validation of the DLN 2.5H Combustion System on the 9H Gas Turbine at Balgan Bay Power Station
,”
ASME
Paper No. GT2005-68843.
7.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.
8.
Chacartegui
,
R.
,
Torres
,
M.
,
Sanchez
,
D.
,
Jimenez
,
F.
,
Munoz
,
A.
, and
Sanchez
,
T.
,
2011
, “
Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels
,”
Fuel Process. Technol.
,
92
(
2
), pp.
213
220
.
9.
Dodo
,
S.
,
Asai
,
T.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2014
, “
Performance of a Multiple-Injection Dry Low NOx Combustor With Hydrogen-Rich Syngas Fuels
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011501
.
10.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiyama
,
Y.
, and
Hayashi
,
A.
,
2015
, “
Part Load Operation of a Multiple-Injection Dry Low NOx Combustor on Hydrogen-Rich Syngas Fuel in an IGCC Pilot Plant
,”
ASME
Paper No. GT2015-42312.
11.
Deng
,
X.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
.
12.
Lai
,
M.
,
Reynolds
,
R. R.
, and
Armstrong
,
J.
,
2002
, “
CFD-Based, Parametric, Design Tool for Gas Turbine Combustors From Compressor Deswirl Exit to Turbine Inlet
,”
ASME
Paper No. GT2002-30090.
13.
Dudebout
,
R.
,
Reynolds
,
B.
, and
Molla-Hosseini
,
K.
,
2004
, “
Integrated Process for CFD Modeling and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-54011.
14.
Safari
,
M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Large Eddy Simulation for Prediction of Entropy Generation in a Non-Premixed Turbulent Jet Flame
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022002
.
15.
Gobbato
,
P.
,
Masi
,
M.
,
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2011
, “
Numerical Simulation of a Hydrogen Fuelled Gas Turbine Combustor
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7993
8002
.
16.
Shih
,
H. Y.
, and
Liu
,
C. R.
,
2014
, “
A Computational Study on the Combustion of Hydrogen/Methane Blended Fuels for a Micro Gas Turbine
,”
Int. J. Hydrogen Energy
,
39
(
27
), pp.
15103
15115
.
17.
Bulat
,
G
.,
2015
, “
Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3175
3183
.
18.
Alzahrani
,
F. M.
,
Sanusi
,
Y. S.
,
Vogiatzaki
,
K.
,
Ghoniem
,
A. F.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2015
, “
Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042201
.
19.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2014
, “
NO and CO Formation in an Industrial Gas Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method
,”
Combust. Flame
,
161
(
7
), pp.
1804
1825
.
20.
Cui
,
Y.
,
2005
, “
Numerical and Experimental Investigation on Gas Turbine Combustor for Syngas
,” Ph.D. thesis, Graduate School of the Chinese Academy of Sciences, Beijing, China.
21.
Xiong
,
Y.
,
Ji
,
L.
,
Zhang
,
Z.
,
Wang
,
Y.
, and
Xiao
,
Y.
,
2008
, “
Three Dimensional CFD Analysis of a Gas Turbine Combustor for Medium/Low Heating Value Syngas Fuel
,”
ASME
Paper No. GT2008-50662.
22.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
23.
Chen
,
L.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel Mixtures in Non-Premixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022204
.
24.
Peters
,
N
.,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
25.
Drake
,
M. C.
, and
Blint
,
R. J.
,
1989
, “
Thermal NOx in Stretch Laminar Opposed-Flow Diffusion Flames With CO/H2/N2 Fuel
,”
Combust. Flame
,
76
(
2
), pp.
151
167
.
26.
Bruce
,
T. W.
,
Mongia
,
H. C.
, and
Reynolds
,
R. S.
,
1978
, “
Combustor Design Criteria Validation
,” Report No. USARTL-TR-78-55A, 55B, 55C.
You do not currently have access to this content.