Finding optimal operating conditions of solar-based power and cooling systems is always a challenge. Performance of these systems is highly dependent on several important parameters, which influence not only the long-term efficiency but also its technical and economic feasibility. This paper studies the operation/configuration problem of an ammonia–water power and cooling cycle using an exergetic and statistical analysis. The Modeling developed in Matlab® and REFPROP 9.0 was used to calculate the thermodynamic properties of the ammonia–water mixture. The thermodynamic model and properties of the ammonia/water mixture were validated with previous models found in the literature. Optimal operating conditions of the combined cycle were obtained by using response surface technique and the ratio between exergetic efficiency and exergy destruction was used as response variable. The results showed that the response variable is highly influenced by the ammonia concentration, pressure ratio (PR), turbine efficiency, and pinch point temperature in the heat exchanger. Finally, the combined cycle was integrated with a solar field using two types of concentrated solar collectors.

References

1.
Best
,
R.
, and
Ortega
,
N.
,
1999
, “
Solar Refrigeration and Cooling
,”
Renewable Energy
,
16
(
1–4
), pp.
685
690
.
2.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
.
3.
Kim
,
D.
, and
Infante-Ferreira
,
C.
,
2008
, “
Solar Refrigeration Options—A State-Of-The-Art Review
,”
Int. J. Refrig.
,
31
(
1
), pp.
3
15
.
4.
Anand
,
S.
,
Gupta
,
A.
, and
Tyagi
,
S.
,
2013
, “
Simulation Studies of Refrigeration Cycles: A Review
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
260
277
.
5.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
343
372
.
6.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.
7.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
.
8.
Kalina
,
A. I.
,
1984
, “
Combined-Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
737
742
.
9.
Zheng
,
D.
,
Chen
,
B.
,
Qi
,
Y.
, and
Jin
,
H.
,
2006
, “
Thermodynamic Analysis of a Novel Absorption Power/Cooling Combined-Cycle
,”
Appl. Energy
,
83
(
4
), pp.
311
323
.
10.
Ayou
,
D. S.
,
Bruno
,
J. C.
,
Saravanan
,
R.
, and
Coronas
,
A.
,
2013
, “
An Overview of Combined Absorption Power and Cooling Cycles
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
728
748
.
11.
Xu
,
F.
,
Goswami
,
D. Y.
, and
Bhagwat
,
S.
,
2000
, “
A Combined Power/Cooling Cycle
,”
Energy
,
25
(
3
), pp.
233
246
.
12.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221
–227.
13.
Hasan
,
A. A.
,
Goswami
,
D. Y.
, and
Vijayaraghavan
,
S.
,
2002
, “
First and Second Law Analysis of a New Power and Refrigeration Thermodynamic Cycle Using a Solar Heat Source
,”
Sol. Energy
,
73
(
5
), pp.
385
393
.
14.
Tamm
,
G.
,
Goswami
,
D.
,
Lu
,
S.
, and
Hasan
,
A. A.
,
2004
, “
Theoretical and Experimental Investigation of an Ammonia/Water Power and Refrigeration Thermodynamic Cycle
,”
Sol. Energy
,
76
(
1–3
), pp.
217
228
.
15.
Padilla
,
R. V.
,
Demirkaya
,
G.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2010
, “
Analysis of Power and Cooling Cogeneration Using Ammonia-Water Mixture
,”
Energy
,
35
(
12
), pp.
4649
4657
.
16.
Fontalvo
,
A.
,
Pinzon
,
H.
,
Duarte
,
J.
,
Bula
,
A.
,
Quiroga
,
A. G.
, and
Padilla
,
R. V.
,
2013
, “
Exergy Analysis of a Combined Power and Cooling Cycle
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
164
171
.
17.
Kim
,
K. H.
,
Han
,
C. H.
, and
Kim
,
K.
,
2012
, “
Effects of Ammonia Concentration on the Thermodynamic Performances of Ammonia/Water Based Power Cycles
,”
Thermochim. Acta
,
530
, pp.
7
16
.
18.
Cengel
,
Y.
, and
Boles
,
M.
,
2010
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Education
, New York.
19.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031201
.
20.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2013
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
21.
Goswami
,
D. Y.
, and
Xu
,
F.
,
1999
, “
Analysis of a New Thermodynamic Cycle for Combined Power and Cooling Using Low and Mid Temperature Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
121
(
2
), pp.
91
97
.
22.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
23.
Tamm
,
G.
,
Goswami
,
D.
,
Lu
,
S.
, and
Hasan
,
A.
,
2004
, “
Theoretical and Experimental Investigation of an Ammonia–Water Power and Refrigeration Thermodynamic Cycle
,”
Sol. Energy
,
76
(
1
), pp.
217
228
.
24.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP
,” 9.0 ed., National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
25.
Montgomery
,
D.
,
2008
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
26.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Haberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
(
1
), pp.
1
12
.
27.
Schenk
,
H.
,
Hirsch
,
T.
,
Feldhoff
,
J. F.
, and
Wittmann
,
M.
,
2014
, “
Energetic Comparison of Linear Fresnel and Parabolic Trough Collector Systems
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041015
.
28.
Mokheimer
,
E. M.
,
Dabwan
,
Y. N.
,
Habib
,
M. A.
,
Said
,
S. A.
, and
Al-Sulaiman
,
F. A.
,
2014
, “
Techno-Economic Performance Analysis of Parabolic Trough Collector in Dhahran, Saudi Arabia
,”
Energy Convers. Manage.
,
86
(
0
), pp.
622
633
.
29.
González
,
L.
,
Zarza
,
E.
, and
Yebra
,
L.
,
2001
, “
Determinación del modificador por ángulo de incidencia de un colector solar ls-3, incluyendo las pérdidas geométricas por final de collector
,” Informe técnico No. DISS-SC-SF-30.
30.
Goswami
,
D. Y.
,
Kreith
,
F.
, and
Kreider
,
J. F.
,
2000
,
Principles of Solar Engineering
,
CRC Press
, Boca Raton, FL.
31.
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas
,
1999
, “
Solar Thermal Electricity Generation: Lectures From the Summer School at the Plataforma Solar de Almería
,” July 13th–17th, 1998,
Ciemat
,
Almería, Spain
.
32.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
33.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
34.
Cau
,
G.
, and
Cocco
,
D.
,
2014
, “
Comparison of Medium-Size Concentrating Solar Power Plants Based on Parabolic Trough and Linear Fresnel Collectors
,”
Energy Procedia
,
45
, pp.
101
110
.
35.
Wagner
,
M.
,
2012
, “
Results and Comparison From the SAM Linear Fresnel Technology Performance Model
,”
2012 World Renewable Energy Forum
, Denver, CO, May 13–17, NREL Conference Paper No. CP-5500-54758.
You do not currently have access to this content.