Onset of auto-ignition of premixed gas-to-liquid (GTL)/air mixture has been determined at high pressures and low temperatures over a wide range of equivalence ratios. The GTL fuel used in this study was provided by Air Force Research Laboratory (AFRL), designated by Syntroleum S-8, which is derived from natural gas via the Fischer–Tropsch (F–T) process. A blend of 32% iso-octane, 25% n-decane, and 43% n-dodecane is employed as the surrogates of GTL fuel for chemical kinetics study. A spherical chamber, which can withstand high pressures up to 400 atm and can be heated up to 500 K, was used to collect pressure rise data, due to combustion, to determine the onset of auto-ignition. A gas chromatograph (GC) system working in conjunction with specialized heated lines was used to verify the filling process. A liquid supply manifold was used to allow the fuel to enter and evaporate in a temperature-controlled portion of the manifold using two cartridge heaters. An accurate high-temperature pressure transducer was used to measure the partial pressure of the vaporized fuel. Pressure rise due to combustion process was collected using a high-speed pressure sensor and was stored in a local desktop via a data acquisition system. Measurements for the onset of auto-ignition were done in the spherical chamber for different equivalence ratios of 0.8–1.2 and different initial pressures of 8.6, 10, and 12 atm at initial temperature of 450 K. Critical pressures and temperatures of GTL/air mixture at which auto-ignition takes place have been identified by detecting aggressive oscillation of pressure data during the spontaneous combustion process throughout the unburned gas mixture. To interpret the auto-ignition conditions effectively, several available chemical kinetics mechanisms were used in modeling auto-ignition of GTL/air mixtures. For low-temperature mixtures, it was shown that auto-ignition of GTL fuel is a strong function of unburned gas temperature, and propensity of auto-ignition was increased as initial temperature and pressure increased.

References

1.
Bao
,
B.
,
El-Halwagi
,
M. M.
, and
Elbashir
,
N. O.
,
2010
, “
Simulation, Integration, and Economic Analysis of Gas-to-Liquid Processes
,”
Fuel Process. Technol.
,
91
(
7
), pp.
703
713
.
2.
Sajjad
,
H.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Khan
,
M. M. R.
,
Arbab
,
M. I.
,
Imtenan
,
S.
, and
Sanjid
,
A.
,
2014
, “
Comparative Study of Biodiesel, GTL Fuel and Their Blends in Context of Engine Performance and Exhaust Emission
,”
Procedia Eng.
,
90
, pp.
466
471
.
3.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
4.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
5.
Askari, O., Beretta, G. P., Eisazadeh-Far, K., and Metghalchi, H.,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Physical J. D
.
6.
EIA
,
2014
, “
Total Petroleum and Other Liquids Production—2014
,”
U.S. Energy Information Administration
, Washington, DC.
7.
Airbus News, 2009,
Airbus
, Blagnac Cedex, France.
8.
Moses
,
C. A.
,
2008
, “
Comparative Evaluation of Semi-Synthetic Jet Fuels
,” Coordinating Research Council, Alpharetta, GA,
CRC Project No. AV-2-04a
.
9.
Gersen
,
S.
,
Darmeveil
,
H.
, and
Levinsky
,
H.
,
2012
, “
The Effects of CO Addition on the Autoignition of H2, CH4 and CH4/H2 Fuels at High Pressure in an RCM
,”
Combust. Flame
,
159
(
12
), pp.
3472
3475
.
10.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resourc. Technol.
(accepted).
11.
Elbashir
,
N. O.
, and
Eljack
,
F. T.
,
2010
, “
A Method to Design an Advanced Gas-to-Liquid Technology Reactor for Fischer–Tropsch Synthesis
,”
2nd Annual Gas Processing Symposium
, Qatar, Jan. 10–14, pp.
369
377
.
12.
Askari
,
O.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2012
, “
Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1205
1212
.
13.
Lee
,
D.
, and
Hochgreb
,
S.
,
1998
, “
Hydrogen Autoignition at Pressures Above the Second Explosion Limit (0.6–4.0 MPa)
,”
Int. J. Chem. Kinet.
,
30
(
6
), pp.
385
406
.
14.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2008
, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
(
1–2
), pp.
145
160
.
15.
Thi
,
L. D.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Shock Tube Study on Ignition Delay of Multi-Component Syngas Mixtures—Effect of Equivalence Ratio
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
6034
6043
.
16.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
17.
Kumar
,
K.
, and
Sung
,
C. J.
,
2010
, “
A Comparative Experimental Study of the Autoignition Characteristics of Alternative and Conventional Jet Fuel/Oxidizer Mixtures
,”
Fuel
,
89
(
10
), pp.
2853
2863
.
18.
Kumar
,
K.
,
Sung
,
C. J.
, and
Hui
,
X.
,
2011
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,”
Fuel
,
90
(
3
), pp.
1004
1011
.
19.
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
Autoignition Studies of Conventional and Fischer–Tropsch Jet Fuels
,”
Fuel
,
98
, pp.
249
258
.
20.
Huber
,
M. L.
,
Smith
,
B. L.
,
Ott
,
L. S.
, and
Bruno
,
T. J.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.
21.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels
,”
Combust. Flame
,
158
(
3
), pp.
434
445
.
22.
Ji
,
C.
,
Wang
,
Y. L.
, and
Egolfopoulos
,
F. N.
,
2011
, “
Flame Studies of Conventional and Alternative Jet Fuels
,”
J. Propul. Power
,
27
(
4
), pp.
856
863
.
23.
Dooley
,
S.
,
Won
,
S. H.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.
24.
Holley
,
A. T.
,
Dong
,
Y.
,
Andac
,
M. G.
,
Egolfopoulos
,
F. N.
, and
Edwards
,
T.
,
2007
, “
Ignition and Extinction of Non-Premixed Flames of Single-Component Liquid Hydrocarbons, Jet Fuels, and Their Surrogates
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1205
1213
.
25.
Trochim
,
W. M. K.
, and
Donnelly
,
J. P.
,
2000
,
Research Methods Knowledge Base
,
Atomic Dog Publishing
,
Cincinnati, OH
.
26.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
27.
Askari
,
O.
,
Janbozorgi
,
M.
,
Greig
,
R.
,
Moghaddas
,
A.
, and
Metghalchi
,
H.
,
2015
, “
Developing Alternative Approaches to Predicting the Laminar Burning Speed of Refrigerants Using the Minimum Ignition Energy
,”
Sci. Technol. Built Environ.
,
21
(
2
), pp.
220
227
.
28.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi- Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
29.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirioa
,
M.
, and
Metghalchi
,
H.
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
J. Appl. Energy
(online).
30.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
31.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.
32.
Rahim
,
F.
,
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Andrews
,
R. J.
, and
Metghalchi
,
H.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(
4
), pp.
151
160
.
33.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.
34.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(
12
), pp.
2485
2496
.
35.
Hajialimohammadi
,
A.
,
Ahmadisoleymani
,
S.
,
Abdullah
,
A.
,
Askari
,
O.
, and
Rezai
,
F.
,
2012
, “
Design and Manufacturing of a Constant Volume Test Combustion Chamber for Jet and Flame Visualization of CNG Direct Injection
,”
Appl. Mech. Mater.
,
217–219
, pp.
2539
2545
.
36.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GTL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.
37.
Edwards
,
T.
,
Minus
,
D.
,
Harrison
,
W.
,
Corporan
,
E.
,
DeWitt
,
M.
,
Zabarnick
,
S.
, and
Balster
,
L.
,
2004
, “
Fischer–Tropsch Jet Fuels—Characterization for Advanced Aerospace Applications
,”
AIAA
Paper No. 2004-3885.
38.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
39.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
40.
Yu
,
J.
,
Wang
,
Z.
,
Wang
,
W.
, and
Gou
,
X.
,
2016
, “
Surrogate Definition and Chemical Kinetic Modeling for Fischer–Tropsch Fuels
,”
Energy Fuels
,
30
(
2
), pp.
1375
1382
.
41.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2015
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,”
Cantera.org
.
You do not currently have access to this content.