The design of cooling solutions is an important consideration for the efficient management of different types of energy technologies. In the present work, we adapt the method of thermo-volumes—which has been used for nearly a decade in the design of electronic cooling solutions—for purposes of expeditiously understanding the thermal resistance of a given solution (in terms of cooling performance) along with its flow resistance (an indicator of the pumping power or energy consumption, which will be required by the thermal solution). Furthermore, we expand on thermo-volumes by including the lifetime exergy cost as a means to enable the consideration of resource consumption (and thus the environmental sustainability) of the cooling solution. We apply this framework for evaluation of thermal management solutions in terms of the heat removal capacity per unit lifetime exergy consumption. This paper concludes by illustrating applicability of the method to the design of a fuel cell thermal management solution.

1.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
19–20
), pp.
3891
3920
.
2.
Djilali
,
N.
, and
Lu
,
D.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
(
1
), pp.
29
40
.
3.
Tsatsaronis
,
G.
, and
Park
,
M. -H.
, 2002, “
On Avoidable and Unavoidable Exergy Destructions and Investment Costs in Thermal Systems
,”
Energy Convers. Manage.
0196-8904,
43
(
9–12
), pp.
1259
1270
.
4.
Bhatt
,
M. S.
, and
Jothibasu
,
S.
, 1999, “
Performance Enhancement in Coal-Fired Thermal Power Plants. Part I: Boilers
,”
Int. J. Energy Res.
0363-907X,
23
(
6
), pp.
465
487
.
5.
Moné
,
C. D.
,
Chau
,
D. S.
, and
Phelan
,
P. E.
, 2001, “
Economic Feasibility of Combined Heat and Power and Absorption Refrigeration With Commercially Available Gas Turbines
,”
Energy Convers. Manage.
0196-8904,
42
(
13
), pp.
1559
1573
.
6.
Frogner
,
B.
, and
Rao
,
H.
, 1978, “
Control of Nuclear Power Plants
,”
IEEE Trans. Autom. Control
0018-9286,
23
(
3
), pp.
405
417
.
7.
Park
,
H.
, and
Dhir
,
V.
, 1992, “
Effect of Outside Cooling on the Thermal Behavior of a Pressurized Water Reactor Vessel Lower Head
,”
Nucl. Technol.
0029-5450,
100
(
3
), pp.
331
346
.
8.
Emery
,
K.
,
Burdick
,
J.
,
Caiyem
,
Y.
,
Dunlavy
,
D.
,
Field
,
H.
,
Kroposki
,
B.
,
Moriarty
,
T.
,
Ottoson
,
L.
,
Rummel
,
S.
,
Strand
,
T.
, and
Wanlass
,
M. W.
, 1996, “
Temperature Dependence of Photovoltaic Cells, Modules and Systems
,”
Conference Record of the 25th IEEE Photovoltaic Specialists Conference
, Washington DC, pp.
1275
1278
.
9.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
, 2004, “
Thermal Regulation of Building-Integrated Photovoltaics Using Phase Change Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
12–13
), pp.
2715
2733
.
10.
Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
, 2007, “
Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources
,”
Energy
0360-5442,
32
(
9
), pp.
1698
1706
.
11.
Snyder
,
J. G.
, and
Ursell
,
T. S.
, 2003, “
Thermoelectric Efficiency and Compatibility
,”
Phys. Rev. Lett.
0031-9007,
91
(
14
), p.
148301
.
12.
Góralczyk
,
M.
, 2003, “
Life-cycle Assessment in the Renewable Energy Sector
,”
Appl. Energy
0306-2619,
75
(
3–4
), pp.
205
211
.
13.
Pehnt
,
M.
, 2006, “
Dynamic Life Cycle Assessment (LCA) of Renewable Energy Technologies
,”
Renewable Energy
0960-1481,
31
(
1
), pp.
55
71
.
14.
Lombardi
,
L.
, 2003, “
Life Cycle Assessment Comparison of Technical Solutions for CO2 Emissions Reduction in Power Generation
,”
Energy Convers. Manage.
0196-8904,
44
(
1
), pp.
93
108
.
15.
Kato
,
S.
,
Maruyama
,
N.
,
Nikai
,
Y.
,
Takai
,
H.
, and
Widiyanto
,
A.
, 2001, “
Life Cycle Assessment Estimation for Eco-Management of Co-Generation Systems
,”
ASME J. Energy Resour. Technol.
0195-0738,
123
(
1
), pp.
15
20
.
16.
Prek
,
M.
, 2004, “
Environmental Impact and Life Cycle Assessment of Heating and Air Conditioning Systems, A Simplified Case Study
,”
Energy Build.
0378-7788,
36
(
10
), pp.
1021
1027
.
17.
Yanagitani
,
K.
, and
Kawahara
,
K.
, 2000, “
LCA Study of Air Conditioners With an Alternative Refrigerant
,”
Int. J. Life Cycle Assess.
0948-3349,
5
(
5
), pp.
287
290
.
18.
Johnson
,
R.
, 2004, “
The Effect of Blowing Agent Choice on Energy Use and Global Warming Impact of a Refrigerator
,”
Int. J. Refrig.
0140-7007,
27
(
7
), pp.
794
799
.
19.
Shah
,
A.
, and
Patel
,
C.
, 2009, “
Designing Environmentally Sustainable Electronic Cooling Solutions Using Exergo-Thermo-Volumes
,”
Int. J. Energy Res.
0363-907X,
33
, pp.
1266
1277
.
20.
Patel
,
C.
, and
Belady
,
C.
, 1997, “
Modeling and Metrology in High Performance Heat Sink Design
,”
Proceedings of the 47th IEEE Electronic Components and Technology Conference (ECTC)
, San Jose, CA, pp.
296
302
.
21.
Bash
,
C.
, and
Patel
,
C.
, 1999, “
Modeling and Metrology for Expedient Analysis and Design of Computer Systems
,”
Intl. J. Microelectronics and Electronic Packaging
,
22
(
2
), pp.
157
163
. 1551-4897
22.
Bejan
,
A.
, 1997,
Advanced Engineering Thermodynamics
, 2nd ed.,
Wiley
,
New York, NY
.
23.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
, 1988,
Exergy Analysis of Thermal, Chemical and Metallurgical Processes
,
Hemisphere
,
New York, NY
.
24.
Creyts
,
J. C.
, and
Carey
,
V. P.
, 1999, “
Use of Extended Exergy Analysis to Evaluate the Environmental Performance of Machining Processes
,”
Proceedings of the Institute of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
,
213
(
4
), pp.
247
264
.
25.
Sciubba
,
E.
, 2001, “
Beyond Thermoeconomics? The Concept of Extended Exergy Accounting and Its Application to the Analysis and Design of Thermal Systems
,”
Int. J. Exergy
,
1
(
2
), pp.
68
84
.
26.
Fronk
,
M. H.
,
Wetter
,
D. L.
,
Masten
,
D. A.
, and
Bosco
,
A.
, 2000, “
PEM Fuel Cell System Solutions for Transportation
,”
Proceedings of the SAE World Congress
, pp.
101
108
.
27.
Badrinarayanan
,
P.
,
Eggert
,
A.
, and
Moore
,
R. M.
, 2001, “
Minimizing the Water and Thermal Management Parasitic Loads in Fuel Cell Vehicles
,”
Int. J. Transp. Phenom.
,
3
(
3
), pp.
213
229
.
28.
Hahn
,
R.
,
Krumm
,
M.
, and
Reichl
,
H.
, 2003, “
Thermal Management of Portable Micro Fuel Cell Stacks
,”
Proceedings of the 19th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMITHERM)
, pp.
202
209
.
29.
Parise
,
R. J.
, and
Jones
,
G. F.
, 2002, “
Fuel Cell Thermal Management with Thermoelectric Coolers
,”
Proceedings of the 37th Intersociety Energy Conversion Engineering Conference (IECEC)
, pp.
607
614
.
30.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2007, “
A Flow Boiling Microchannel Evaporator Plate for Fuel Cell Thermal Management
,”
Heat Transfer Eng.
,
28
(
10
), pp.
877
884
.
31.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
, 2006, “
A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
.
32.
Nguyen
,
T.
, and
White
,
R.
, 1993, “
A Water and Heat Management Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
8
), pp.
2178
2186
.
33.
Kim
,
J.
,
Lee
,
S. -M.
,
Srinivasan
,
S.
, and
Chamberlin
,
C.
, 1995, “
Modeling of Proton Exchange Membrane Fuel Cell Performance With an Empirical Equation
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2670
2674
.
34.
Zhang
,
Y.
,
Ouyang
,
M.
,
Lu
,
Q.
,
Luo
,
J.
, and
Li
,
X.
, 2004, “
A Model Predicting Performance of Proton Exchange Membrane Fuel Cell Stack Thermal Systems
,”
Appl. Therm. Eng.
,
24
(
4
), pp.
501
513
.
35.
Pehnt
,
M.
, 2001, “
Life-cycle Assessment of Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
26
(
1
), pp.
91
101
.
You do not currently have access to this content.