Intense energy security debates amidst the ever increasing demand for energy in the US have provided sufficient impetus to investigate alternative and sustainable energy sources to the current fossil fuel economy. This paper presents the advanced (injection) low pilot ignition natural gas (ALPING) engine as a viable, efficient, and low emission alternative to conventional diesel engines, and discusses further efficiency improvements to the base ALPING engine using organic rankine cycles (ORC) as bottoming cycles. The ALPING engine uses advance injection (5060deg BTDC) of very small diesel pilots in the compression stroke to compression ignite a premixed natural gas-air mixture. It is believed that the advanced injection of the higher cetane diesel fuel leads to longer in-cylinder residence times for the diesel droplets, thereby resulting in distributed ignition at multiple spatial locations, followed by lean combustion of the higher octane natural gas fuel via localized flame propagation. The multiple ignition centers result in faster combustion rates and higher fuel conversion efficiencies. The lean combustion of natural gas leads to reduction in local temperatures that result in reduced oxides of nitrogen (NOx) emissions, since NOx emissions scale with local temperatures. In addition, the lean premixed combustion of natural gas is expected to produce very little particulate matter emissions (not measured). Representative base line ALPING (60deg BTDC pilot injection timing) (without the ORC) half load (1700rpm, 21kW) operation efficiencies reported in this study are about 35% while the corresponding NOx emission is about 0.02gkWh, which is much lower than EPA 2007 Tier 4 Bin 5 heavy-duty diesel engine statutes of 0.2gkWh. Furthermore, the possibility of improving fuel conversion efficiency at half load operation with ORCs using “dry fluids” is discussed. Dry organic fluids, due to their lower critical points, make excellent choices for waste heat recovery Rankine cycles. Moreover, previous studies indicate that dry fluids are more preferable compared to wet fluids because the need to superheat the fluid to extract work from the turbine is eliminated. The calculations show that ORC—turbocompounding results in fuel conversion efficiency improvements of the order of 10% while maintaining the essential low NOx characteristics of ALPING combustion.

1.
Annual Energy Outlook With Projections to 2030, 2006, Report No. DOE/EIA-0383, Retrieved Jun. 26, 2006 From http://www.eia.doe.gov/oiaf/aeo/index.htmlhttp://www.eia.doe.gov/oiaf/aeo/index.html
2.
Annual Energy Review (AER)
, 2004, Report No. DOE/EIA-0384(2004), Retrieved Jun. 26, 2006 From http://www.eia.gov/eneu/aer/contents.htmlhttp://www.eia.gov/eneu/aer/contents.html
3.
Cheng
,
A. S.
,
Upatnieks
,
A.
, and
Mueller
,
C. J.
, 2006, “
Investigation of the Impact of Biodiesel Fuelling on NOx Emission in an Optical Direct Injection Diesel Engine
,”
Int. J. Energy Res.
0363-907X,
7
, pp.
297
318
.
4.
Chen
,
S. K.
, and
Lin
,
R.
, 1983, “
Review of Engine Advanced Cycle and Rankine Bottoming Cycle and Their Loss Evaluations
,” SAE Paper No. 830124.
5.
Cerri
,
G.
, 1983, “
Regenerative Supercharging of Four Stroke Internal Combustion Engines
,” SAE Paper No. 830507.
6.
DiBella
,
F. A.
,
DiNanno
,
L. R.
, and
Koplow
,
M. D.
, 1983, “
Laboratory and On-Highway Testing of Diesel Organic Rankine Compound Long-Haul Vehicle Engine
,” SAE Paper No. 830122.
7.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
, 2006, “
Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle
,” SAE Paper No. 2006-01-3522.
8.
Arias
,
D. A.
,
Shedd
,
T. A.
, and
Jester
,
R. K.
, 2006, “
Theoretical Analysis of Waste Heat Recovery From an Internal Combustion Engine in a Hybrid Vehicle
,” SAE Paper No. 2006-01-1605.
9.
Chammas
,
R. E.
, and
Clodic
,
D.
, 2005, “
Combined Cycle for Hybrid Vehicles
,” SAE Paper No. 2005-01-1171.
10.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
, 1997, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
0360-5442,
22
(
7
), pp.
661
667
.
11.
Aceves
,
S. M.
,
Martinez-Frias
,
J.
, and
Reistad
,
G. M.
, 2006, “
Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications
,”
ASME J. Energy Resour. Technol.
0195-0738,
128
, pp.
16
36
.
12.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
, 2004, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
3
), pp.
665
671
.
13.
Singh
,
S.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Midkiff
,
K. C.
, and
Bell
,
S. R.
, 2003, “
Effect of Pilot Injection Timing, Pilot Quantity, and Intake Charge Conditions on Performance and NOx Emissions for an Advanced Low-Pilot-Ignited Natural Gas Engine
,”
Int. J. Energy Res.
0363-907X,
5
(
4
), pp.
329
348
.
14.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
, 2006, “
The Advanced Low Pilot Ignited Natural Gas Engine—A Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
1
), pp.
213
218
.
15.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Midkiff
,
K. C.
, 2006, “
Improving Low Load Combustion, Stability and Emissions in Pilot-Ignited Natural Gas Engines
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
220
, pp.
229
239
.
16.
Yang
,
H.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
, and
Midkiff
,
K. C.
, 2006, “
Sensitivity Analysis of NOx Formation From Micro-Pilot Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
1
), pp.
261
270
.
17.
Qi
,
Y.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Yang
,
H.
, and
Midkiff
,
K. C.
, 2007, “
Effect of Hot EGR on the Performance and Emissions of an Advanced Injection Low Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
1468-0874
8
(
3
), pp.
289
305
.
18.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Qi
,
Y.
,
Yang
,
H.
, and
Midkiff
,
K. C.
, 2007, “
Analysis of Diesel Pilot-Ignited Natural Gas Low-Temperature Combustion With Hot Exhaust Gas Recirculation
,”
Combust. Sci. Technol.
0010-2202,
179
(
9
), pp.
1737
1776
.
19.
Foster
,
D. E.
, and
Myers
,
P. S.
, 1982, “
Heavy-Duty Diesel Fuel Economy
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
104
(
12
), pp.
50
55
.
20.
Brands
,
M. C.
,
Werner
,
J. R.
,
Hoehne
,
J. L.
, and
Kramers
,
S.
, 1981, “Vehicle Testing of Cummins Turbocompounded Diesel Engine,” SAE 810073.
21.
Maizza
,
V.
, and
Maizza
,
A.
, 1996, “
Working Fluids in Non-Steady Flows for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
1359-4311,
16
(
7
), pp.
579
590
.
22.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
, 2005, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
0195-0738,
127
, pp.
125
130
.
23.
Maizza
,
V.
, and
Maizza
,
A.
, 2001, “
Unconventional Working Fluids in Organic Rankine-Cycles for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
1359-4311,
21
(
3
), pp.
381
390
.
24.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
, 2007, “Analysis and Optimization of Organic Rankine Cycles,” IMechE Journal of Power and Energy, 221(3), pp. 255–263
25.
Niggeman
,
R. E.
,
Greenlee
,
W. J.
, and
Lacey
,
P.
, 1978, “
Fluid Selection and Optimization of an Organic Rankine Cycle Waste Heat Power Conversion System
,” ASME 78-WA.
26.
Lee
,
M. J.
,
Tien
,
D. L.
, and
Shao
,
C. T.
, 1993, “
Thermophysical Capability of Ozone Safe Working Fluids for an Organic Rankine-Cycle System
,”
Heat Recovery Syst. CHP
0890-4332,
13
, pp.
409
418
.
27.
Gebert
,
K.
,
Beck
,
N. J.
,
Barkhimer
,
R. L.
,
Wong
,
H.-C.
, and
Wells
,
A. D.
, 1996, “
Development of Pilot Fuel Injection System for CNG Engine
,” SAE Paper No. 961100.
28.
Gebert
,
K.
,
Beck
,
N. J.
,
Barkhimer
,
R. L.
, and
Wong
,
H.-C.
, 1997, “
Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines
,” SAE Paper No. 971712.
29.
Abd Alla
,
G. H.
,
Soliman
,
H. A.
,
Badr
,
O. A.
, and
Abd Rabbo
,
M. F.
, 2002, “
Effect of Injection Timing on the Performance of a Dual Fuel Engine
,”
Energy Convers. Manage.
0196-8904,
43
, pp.
269
277
.
You do not currently have access to this content.