Abstract

Liquid metal-based gallium conductors exhibit unique physical and electromechanical properties, which make them excellent candidates for the next generation of wearable electronics. In this study, a novel fluid phase-based gallium conductor was stencil printed on thermoplastic polyurethane (TPU) to fabricate a stretchable conductor as well as a stretchable radio frequency (RF) transmission line. The electromechanical reliability of the conductor during high elongation as well as cyclic tension and bend fatigue was evaluated and compared with commercially available stretchable silver-filled polymer paste. The microstructure of the liquid metal conductor and the silver paste was investigated via scanning electron microscopy (SEM) before and after the samples were subjected to high elongation (>100%). Unlike the silver paste, the liquid metal conductor maintained its microstructural integrity while its resistance showed a linear response to changes in length. A cyclic tension fatigue test confirmed the fatigue-free performance of the liquid metal conductor during 8000 stretching cycles at a strain amplitude of 30%. The electromagnetic structure of the RF transmission line was simulated and then compared to the measured data. The measurements for insertion loss showed that U-bending, 90 deg twisting, and 1000 stretching cycles at a strain amplitude of 100% did not have a significant impact on the RF performance. Details of the DC tests and RF measurements, including the microstructural analysis and simulation results, will be discussed in this article.

References

1.
Khinda
,
G. S.
,
Umar
,
A.
,
Cadwell
,
R. J.
,
Alhendi
,
M.
,
Stoffel
,
N. C.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2020
, “
Flexible Inkjet-Printed Patch Antenna Array on Mesoporous PET Substrate for 5G Applications With Stable RF Performance After Mechanical Stress Cycling
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
),
Orlando, FL
, June 3–30, pp.
1824
1831
.10.1109/ECTC32862.2020.00285
2.
Zhang
,
Q.
,
Jiajie
,
L.
,
Yi
,
H.
,
Huiyu
,
C.
, and
Rujun
,
M.
,
2019
, “
Intrinsically Stretchable Conductors and Interconnects for Electronic Applications
,”
Mater. Chem. Front.
,
3
(
6
), pp.
1032
1051
.10.1039/C9QM00055K
3.
Rogers
,
J. A.
,
Someya
,
T.
, and
Yonggang
,
H.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.10.1126/science.1182383
4.
Kim
,
D.-H.
, and
Rogers
,
J. A.
,
2008
, “
Stretchable Electronics: Materials Strategies and Devices
,”
Adv. Mater.
,
20
(
24
), pp.
4887
4892
.10.1002/adma.200801788
5.
Nassar
,
J. M.
,
Rojas
,
J. P.
,
Hussain
,
A. M.
, and
Hussain
,
M. M.
,
2016
, “
From Stretchable to Reconfigurable Inorganic Electronics
,”
Extreme Mech. Lett.
,
9
, pp.
245
268
.10.1016/j.eml.2016.04.011
6.
Garakani
,
B.
,
Somarathna
,
K. U. S.
,
Khinda
,
G. S.
,
Sivasubramony
,
R. S.
,
Abbara
,
E. M.
,
Poliks
,
M. D.
, and
Srinivas
,
S.
, et al.,
2021
, “
Electromechanical Characterization of a Highly Stretchable Liquid Metal Derived Conductor for Wearable Electronics
,” 2021 IEEE 71st Electronic Components and Technology Conference (
ECTC
),
San Diego, CA
, June 1–July 4, pp.
762
768
10.1109/ECTC32696.2021.00131.
7.
Matsuhisa
,
N.
,
Chen
,
X.
,
Bao
,
Z.
, and
Someya
,
T.
,
2019
, “
Materials and Structural Designs of Stretchable Conductors
,”
Chem. Soc. Rev.
,
48
(
11
), pp.
2946
2966
.10.1039/C8CS00814K
8.
Yu
,
X.
,
Mahajan
,
B.
,
Shou
,
W.
, and
Pan
,
H.
,
2017
, “
Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors
,”
Micromachines
,
8
(
1
), p.
7
.10.3390/mi8010007
9.
Jiang
,
C.
,
Li
,
Q.
,
Fan
,
S.
,
Guo
,
Q.
,
Bi
,
S.
,
Wang
,
X.
,
Cao
,
X.
,
Liu
,
Y.
, and
Song
,
J.
,
2020
, “
Hyaline and Stretchable Haptic Interfaces Based on Serpentine-Shaped Silver Nanofiber Networks
,”
Nano Energy
,
73
, p.
104782
.10.1016/j.nanoen.2020.104782
10.
Somarathna
,
K. U. S.
,
Garakani
,
B.
,
Alhendi
,
M.
,
Enakerakpo
,
E.
,
Borgesen
,
P.
,
Poliks
,
M. D.
, and
Alizadeh
,
A.
,
2020
, “
A Study of Electromechanical Behaviors of Printed Conductive Leads on Stretchable Textiles for Smart Clothing
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
),
Orlando, FL
, June 3–30, pp.
2157
2166
10.1109/ECTC32862.2020.00336.
11.
Koshi
,
T.
,
Nomura
,
K.-I.
, and
Yoshida
,
M.
,
2021
, “
Measurement and Analysis on Failure Lifetime of Serpentine Interconnects for E-Textiles Under Cyclic Large Deformation
,”
Flexible Printed Electron.
,
6
(
2
), p.
025003
.10.1088/2058-8585/abfe4c
12.
Chun
,
K.-Y.
,
Oh
,
Y.
,
Rho
,
J.
,
Ahn
,
J.-H.
,
Kim
,
Y.-J.
,
Choi
,
H. R.
, and
Baik
,
S.
,
2010
, “
Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver
,”
Nat. Nanotechnol.
,
5
(
12
), pp.
853
857
.10.1038/nnano.2010.232
13.
Li
,
M.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Zhou
,
H.
,
Huang
,
Z.
, and
Li
,
D.
,
2018
, “
Highly Flexible and Stretchable MWCNT/HEPCP Nanocomposites With Integrated Near-IR, Temperature and Stress Sensitivity for Electronic Skin
,”
J. Mater. Chem. C
,
6
(
22
), pp.
5877
5887
10.1039/C8TC01331D.
14.
Somarathna
,
K. U. S.
,
Khinda
,
G. S.
,
Garakani
,
B.
,
Abbara
,
E. M.
,
Stoffel
,
N.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2021
, “
Printed Stretchable Conductors for Smart Clothing: The Effect of Conductor Geometry and Substrate Properties on Electromechanical Behaviors
,” 2021 IEEE 71st Electronic Components and Technology Conference (
ECTC
),
San Diego, CA
, June 1–July 4, pp.
500
506
10.1109/ECTC32696.2021.00090.
15.
Shin
,
U.-H.
,
Jeong
,
D.-W.
,
Kim
,
S.-H.
,
Lee
,
H. W.
, and
Kim
,
J.-M.
,
2014
, “
Elastomer-Infiltrated Vertically Aligned Carbon Nanotube Film-Based Wavy-Configured Stretchable Conductors
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
12909
12914
.10.1021/am502851e
16.
Gutruf
,
P.
,
Walia
,
S.
,
Ali
,
M. N.
,
Sriram
,
S.
, and
Bhaskaran
,
M.
,
2014
, “
Strain Response of Stretchable Micro-Electrodes: Controlling Sensitivity With Serpentine Designs and Encapsulation
,”
Appl. Phys. Lett.
,
104
(
2
), p.
021908
10.1063/1.4862264.
17.
Dickey
,
M. D.
,
2017
, “
Stretchable and Soft Electronics Using Liquid Metals
,”
Adv. Mater.
,
29
(
27
), p.
1606425
.10.1002/adma.201606425
18.
Ren
,
Y.
,
Sun
,
X.
, and
Liu
,
J.
,
2020
, “
Advances in Liquid Metal-Enabled Flexible and Wearable Sensors
,”
Micromachines
,
11
(
2
), p.
200
.10.3390/mi11020200.
19.
Liu
,
Y.
,
Ji
,
X.
, and
Liang
,
J.
,
2021
, “
Rupture Stress of Liquid Metal Nanoparticles and Their Applications in Stretchable Conductors and Dielectrics
,”
npj Flexible Electron.
,
5
(
1
), pp.
1
7
.10.1038/s41528-021-00108-w
20.
Wang
,
L.
, and
Liu
,
J.
,
2019
, “
Advances in the Development of Liquid Metal-Based Printed Electronic Inks
,”
Front. Mater.
,
6
, p.
303
10.3389/fmats.2019.00303.
21.
Yao
,
B.
,
Xu
,
X.
,
Zhang
,
Q.
,
Yu
,
H.
,
Li
,
H.
,
Ren
,
L.
,
Perini
,
S.
,
Lanagan
,
M.
,
Wang
,
Q.
, and
Wang
,
H.
,
2020
, “
Highly Stretchable and Mechanically Tunable Antennas Based on Three-Dimensional Liquid Metal Network
,”
Mater. Lett.
,
270
, p.
127727
.10.1016/j.matlet.2020.127727
22.
So
,
J.-H.
,
Thelen
,
J.
,
Qusba
,
A.
,
Hayes
,
G. J.
,
Lazzi
,
G.
, and
Dickey
,
M. D.
,
2009
, “
Reversibly Deformable and Mechanically Tunable Fluidic Antennas
,”
Adv. Funct. Mater.
,
19
(
22
), pp.
3632
3637
.10.1002/adfm.200900604
23.
Li
,
M.
,
Wu
,
Y.
,
Zhang
,
L.
,
Wo
,
H.
,
Huang
,
S.
,
Li
,
W.
,
Zeng
,
X.
,
Ye
,
Q.
,
Xu
,
T.
,
Luo
,
J.
,
Dong
,
S.
,
Li
,
Y.
,
Jin
,
H.
, and
Wang
,
X.
,
2019
, “
Liquid Metal-Based Electrical Interconnects and Interfaces With Excellent Stability and Reliability for Flexible Electronics
,”
Nanoscale
,
11
(
12
), pp.
5441
5449
10.1039/C8NR09503E.
24.
Lazarus
,
N.
,
Bedair
,
S. S.
, and
Kierzewski
,
I. M.
,
2017
, “
Ultrafine Pitch Stencil Printing of Liquid Metal Alloys
,”
ACS Appl. Mater. Interfaces
,
9
(
2
), pp.
1178
1182
.10.1021/acsami.6b13088
25.
Neumann
,
T. V.
, and
Dickey
,
M. D.
,
2020
, “
Liquid Metal Direct Write and 3D Printing: A Review
,”
Adv. Mater. Technol.
,
5
(
9
), p.
2000070
.10.1002/admt.202000070.
26.
Somarathna
,
K. U. S.
,
Garakani
,
B.
,
Weerawarne
,
D. L.
,
Khinda
,
G. S.
,
Burns
,
A.
,
Alizadeh
,
A.
, and
Poliks
,
M. D.
,
2021
, “
Screen-Printed Water-Soluble Resistors for Wearable Electronics: An Analysis of the Fabrication Process
,” 2021 IEEE 71st Electronic Components and Technology Conference (
ECTC
),
San Diego, CA
, June 1–July 4, pp.
2285
2292
10.1109/ECTC32696.2021.00358.
27.
Garakani
,
B.
,
Somarathna
,
K. U. S.
,
Khinda
,
G. S.
,
Enakerakpo
,
E.
,
Alhendi
,
M.
,
Poliks
,
M. D.
,
Borgesen
,
P.
, and
Alizadeh
,
A.
,
2020
, “
Effects of Process Parameters and Isothermal Fatigue Cycling on Electromechanical Properties of Screen-Printed Interconnect on Nonwovens for Wearable Electronics
,” 2020 IEEE 70th Electronic Components and Technology Conference (
ECTC
),
Orlando, FL
, June 3–30, pp.
2167
2174
.10.1109/ECTC32862.2020.00337
28.
Li
,
Y.
,
Feng
,
S.
,
Cao
,
S.
,
Zhang
,
J.
, and
Kong
,
D.
,
2020
, “
Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics
,”
ACS Appl. Mater. Interfaces
,
12
(
45
), pp.
50852
50859
.10.1021/acsami.0c15084
29.
Thrasher
,
C. J.
,
Farrell
,
Z. J.
,
Morris
,
N. J.
,
Willey
,
C. L.
, and
Tabor
,
C. E.
,
2019
, “
Mechanoresponsive Polymerized Liquid Metal Networks
,”
Adv. Mater.
,
31
(
40
), p.
1903864
10.1002/adma.201903864.
30.
Gbur
,
J. L.
, and
Lewandowski
,
J. J.
,
2016
, “
Fatigue and Fracture of Wires and Cables for Biomedical Applications
,”
Int. Mater. Rev.
,
61
(
4
), pp.
231
314
.10.1080/09506608.2016.1152347.
31.
Garakani
,
B.
,
Sandakelum Somarathna
,
K. U.
,
Weerawarne
,
D. L.
,
Poliks
,
M. D.
, and
Alizadeh
,
A.
,
2019
, “
Reliability of Screen-Printed Conductors and Resistors During Fatigue Cycling on Flexible Substrate
,”
Int. Symp. Microelectron.
,
2019
(
1
), pp.
000139
000146
.10.4071/2380-4505-2019.1.000139
32.
Mohammed
,
A.
, and
Pecht
,
M.
,
2016
, “
A Stretchable and Screen-Printable Conductive Ink for Stretchable Electronics
,”
Appl. Phys. Lett.
,
109
(
18
), p.
184101
.10.1063/1.4965706.
33.
Khinda
,
G. S.
,
Strohmayer
,
M.
,
Weerawarne
,
D. L.
,
Lombardi
,
J. P.
,
Tokranova
,
N.
,
Castracane
,
J.
,
Ventrice
,
C. A.
,
Poliks
,
M. D.
, and
Levitsky
,
I. A.
,
2019
, “
Transparent Conductive Printable Meshes Based on Percolation Patterns
,”
ACS Appl. Electron. Mater.
,
1
(
7
), pp.
1290
1294
.10.1021/acsaelm.9b00229
34.
Cahn
,
G.
,
Pierron
,
O.
, and
Antoniou
,
A.
,
2021
, “
Electrical Performance Evolution and Fatigue Mechanisms of Silver-Filled Polymer Ink Under Uniaxial Cyclic Stretch
,”
Flexible Printed Electron.
,
6
(
3
), p.
035008
10.1088/2058-8585/ac1243.
35.
Garakani
,
B.
,
2022
, “
Fabrication, Characterization, and Electromechanical Reliability of Printed Stretchable and Wearable Electronics
,”
Ph.D. dissertation
3,
State University of New York
,
New York
.https://www.proquest.com/openview/0ef5216fba9c73370c7473a3b1578b5f/1.pdf?pqorigsite=gscholar&cbl=18750&diss=y
36.
Engelmaier
,
W.
,
1982
, “
A Method for the Determination of Ductility for Thin Metallic Materials
,”
ASTM International
,
West Conshohocken, PA
.10.1520/STP28400S
37.
Keysight
, 2021, “
De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer
,” Keysight, Santa Rosa, CA, accessed Dec. 3, 2021, https://www.keysight.com/us/en/assets/7018-06806/application-notes/5980-2784.pdf
38.
Chen
,
Z.
,
Xi
,
J.
,
Huang
,
W.
, and
Matthew
,
M. F. Y.
,
2017
, “
Stretchable Conductive Elastomer for Wireless Wearable Communication Applications
,”
Sci. Rep.
,
7
(
1
), p.
10958
.10.1038/s41598-017-11392-w
39.
Stehr
,
U.
,
Centeno
,
L. F.
,
Ni
,
Y.
,
Jacobs
,
H. O.
, and
Hein
,
M. A.
,
2020
, “
RF Properties of Stretchable Transmission Line Structures
,” 2020 German Microwave Conference (
GeMiC
),
Cottbus, Germany
, Mar. 9–11, pp.
272
275
.https://ieeexplore.ieee.org/document/9080242
You do not currently have access to this content.