Abstract

One of the crucial factors in determining the reliability of an electronic device is fatigue failure of the interconnecting solder joints. In most cases, large bulk samples are used to study the fatigue characteristics of the solder materials. Real solder joints often encountered in ball grid array (BGA) components have only been considered in limited investigations. In this study, a specialized sandwich BGA test vehicle with a 3 × 3 solder joint was connected to the two substrates. The alloys were tested at room temperature using an Instron micromechanical tester in both the stress-controlled and strain-controlled methods. The tests were performed at a constant strain rate. Four stresses and four strain levels of the solder alloy Sn-3.0Ag-0.5Cu (SAC305) were examined using organic solderability preservative (OSP) and electroless nickel-immersion silver (ENIG) surface finishes. The work per cycle and plastic strain range was computed based on a systematic recording of the stress–strain (hysteresis) loops of each sample. A novel approach based on inelastic work is developed to calculate the fatigue life of a BGA assembled test vehicle. The results of the stress-controlled and strain-controlled tests indicated that the OSP surface finishes outperformed the ENIG surface finish. Regardless of the testing process and surface finish, the Coffin–Manson and Morrow energy models were acceptable for SAC305.

References

1.
Lee
,
J. H.
, and
Jeong
,
H.-Y.
,
2014
, “
Fatigue Life Prediction of Solder Joints With Consideration of Frequency, Temperature and Cracking Energy Density
,”
Int. J. Fatigue
,
61
, pp.
264
270
.10.1016/j.ijfatigue.2013.10.021
2.
Wang
,
D. Q. Q.
,
Yao
,
D. D.
,
Gao
,
Z. B.
,
Wang
,
Q.
,
Zhang
,
Z. F.
, and
Li
,
X. W.
,
2021
, “
Fatigue Mechanism of Medium-Carbon Steel Welded Joint: Competitive Impacts of Various Defects
,”
Int. J. Fatigue
,
151
, p.
106363
.10.1016/j.ijfatigue.2021.106363
3.
Lall
,
P.
,
Zhang
,
Y.
,
Kasturi
,
M.
,
Wu
,
H.
,
Davis
,
E.
, and
Suhling
,
J.
,
2020
, “
Property-Performance Relationships for Sustained High Temperature Operation of Electronics
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
),
IEEE
, Orlando, FL, June 3–30, pp.
257
268
.10.1109/ECTC32862.2020.00051
4.
Lall
,
P.
,
Zhang
,
Y.
,
Kasturi
,
M.
,
Choudhury
,
P.
,
Wu
,
H.
,
Suhling
,
J.
, and
Davis
,
E.
,
2021
, “
Evolution of Viscoelastic Properties and Interface-Fracture Toughness Under Sustained High Temperature Operation Typical of Automotive Underhood for Up to 1-Year
,” IEEE 71st Electronic Components and Technology Conference (
ECTC
),
IEEE
, Virtual, June 1– July 4, pp.
971
982
.10.1109/ECTC32696.2021.00160
5.
Lall
,
P.
,
Zhang
,
Y.
, and
Williamson
,
J.
,
2021
, “
Degradation Mechanisms of Epoxy Molding Compound Subjected to High Temperature Long Term Aging
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, San Diego, CA, June 1–4, pp.
610
616
.10.1109/ITherm51669.2021.9503197
6.
Park
,
T.-Y.
,
Park
,
J.-C.
, and
Oh
,
H.-U.
,
2018
, “
Evaluation of Structural Design Methodologies for Predicting Mechanical Reliability of Solder Joint of BGA and TSSOP Under Launch Random Vibration Excitation
,”
Int. J. Fatigue
,
114
, pp.
206
216
.10.1016/j.ijfatigue.2018.05.012
7.
Pang
,
J. H. L.
,
Xiong
,
B. S.
, and
Low
,
T. H.
,
2004
, “
Low Cycle Fatigue Models for Lead-Free Solders
,”
Thin Solid Films
,
462–463
, pp.
408
412
.10.1016/j.tsf.2004.05.037
8.
Herkommer
,
D.
,
Punch
,
J.
, and
Reid
,
M.
,
2010
, “
A Reliability Model for SAC Solder Covering Isothermal Mechanical Cycling and Thermal Cycling Conditions
,”
Microelectron. Reliab.
,
50
(
1
), pp.
116
126
.10.1016/j.microrel.2009.08.008
9.
Dusek
,
M.
,
Okoro
,
C.
, and
Hunt
,
C.
,
2006
, “
Establishing the Stress/Strain Behaviour of Solder Alloys Under Multiple Constant Strain Cycles With Isothermal Conditions
,” First Electronic Systemintegration Technology Conference,
IEEE
, Dresden, Germany, Sept. 5–7, pp.
942
946
.10.1109/ESTC.2006.280124
10.
Dušek
,
M.
, and
Hunt
,
C.
,
2007
, “
Low Cycle Isothermal Fatigue Properties of Lead‐Free Solders
,”
Solder. Surf. Mt. Technol.
,
19
(
4
), pp.
25
32
.10.1108/09540910710848527
11.
Lee
,
K. O.
,
Yu
,
J.
,
Park
,
T. S.
, and
Lee
,
S.-B.
,
2004
, “
Low-Cycle Fatigue Characteristics of Sn-Based Solder Joints
,”
J. Electron. Mater.
,
33
(
4
), pp.
249
257
.10.1007/s11664-004-0130-x
12.
Mondal
,
D.
,
Fahim
,
A.
,
Hassan
,
K. M. R.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2020
, “
Deformation Behavior of SAC305 Solder Joints With Multiple Grains
,”
ASME
Paper No. IPACK2020-2694.10.1115/IPACK2020-2694
13.
Mondal
,
D.
,
Fahim
,
A.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2020
, “
Modeling Deformation Behavior of Multiple Grained SAC305 Solder Joints
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Orlando, FL, July 21–23, pp.
1221
1228
.10.1109/ITherm45881.2020.9190265
14.
Wärner
,
H.
,
Xu
,
J.
,
Chai
,
G.
,
Moverare
,
J.
, and
Calmunger
,
M.
,
2021
, “
Microstructural Evolution During High Temperature Dwell-Fatigue of Austenitic Stainless Steels
,”
Int. J. Fatigue
,
143
, p.
105990
.10.1016/j.ijfatigue.2020.105990
15.
Su
,
S.
,
Jian
,
M.
, and
Hamasha
,
S.
,
2020
, “
Effects of Surface Finish on the Shear Fatigue of SAC-Based Solder Alloys
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
3
), pp.
457
466
.10.1109/TCPMT.2019.2942806
16.
Su
,
S.
,
Jian
,
M.
,
Wei
,
X.
,
Akkara
,
F. J.
,
Suhling
,
J.
, and
Lall
,
P.
,
2019
, “
Effect of Surface Finish on the Fatigue Behavior of Bi-Based Solder Joints
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Las Vegas, NV, May 28–31, pp.
1155
1159
.10.1109/ITHERM.2019.8757419
17.
Hamasha
,
S.
, and
Borgesen
,
P.
,
2016
, “
Effects of Strain Rate and Amplitude Variations on Solder Joint Fatigue Life in Isothermal Cycling
,”
ASME J. Electron. Packag.
,
138
(
2
), p.
021002
.10.1115/1.4032881
18.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2003
, “
Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5 Sn–3.5 Ag
,”
Mater. Sci. Eng. A
,
345
(
1–2
), pp.
90
98
.10.1016/S0921-5093(02)00461-6
19.
Benabou
,
L.
,
Sun
,
Z.
, and
Dahoo
,
P.-R.
,
2013
, “
A Thermo-Mechanical Cohesive Zone Model for Solder Joint Lifetime Prediction
,”
Int. J. Fatigue
,
49
, pp.
18
30
.10.1016/j.ijfatigue.2012.12.008
20.
Wei
,
X.
,
Jian
,
M.
,
Belhadi
,
M. E. A.
,
Suhling
,
J.
, and
Lall
,
P.
,
2021
, “
Fatigue Performance of Ball Grid Array Components at Elevated Temperature
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, San Diego, CA, June 1–4, pp.
876
884
.10.1109/ITherm51669.2021.9503257
21.
Kanchanomai
,
C.
,
Yamamoto
,
S.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
McEvily
,
A. J.
,
2002
, “
Low Cycle Fatigue Test for Solders Using Non-Contact Digital Image Measurement System
,”
Int. J. Fatigue
,
24
(
1
), pp.
57
67
.10.1016/S0142-1123(01)00052-4
22.
Jian
,
M.
,
Wei
,
X.
,
Suhling
,
J.
, and
Lall
,
P.
,
2020
, “
Effect of Varying Amplitude Cycling on SAC-Bi Solder Joint Fatigue
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Orlando, FL, July 21–23, pp.
1017
1023
.10.1109/ITherm45881.2020.9190437
23.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2004
, “
Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn–Ag Eutectic Solder
,”
Mater. Sci. Eng. A
,
381
(
1–2
), pp.
113
120
.10.1016/j.msea.2004.04.018
24.
Kanayama
,
H.
,
Konishi
,
Y.
,
Ogawa
,
F.
,
Itoh
,
T.
,
Sakane
,
M.
,
Yamashita
,
M.
, and
Hokazono
,
H.
,
2018
, “
Effect of Additional Elements on the Low-Cycle-Fatigue Characteristics of Sn-1.0 Ag-0.7 Cu Solder Obtained Using a Miniature-Sized Specimen
,”
Int. J. Fatigue
,
116
, pp.
180
191
.10.1016/j.ijfatigue.2018.06.023
25.
Kariya
,
Y.
, and
Otsuka
,
M.
,
1998
, “
Mechanical Fatigue Characteristics of Sn-3.5 Ag-x (X= Bi, Cu, Zn and in) Solder Alloys
,”
J. Electron. Mater.
,
27
(
11
), pp.
1229
1235
.10.1007/s11664-998-0074-7
26.
Su
,
S.
,
Akkara
,
F. J.
,
Raj
,
A.
,
Zhao
,
C.
,
Gordon
,
S.
,
Sridhar
,
S.
,
Thirugnanasambandam
,
S.
,
Suhling
,
J.
, and
Evans
,
J.
,
2019
, “
Reliability of Micro-Alloyed SnAgCu Based Solder Interconnections for Various Harsh Applications
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
),
IEEE
, Las Vegas, NV, May 28–31, pp.
2309
2317
.10.1109/ECTC.2019.00318
27.
Wei
,
X.
,
Belhadi
,
M.
,
Hamasha
,
S.
,
Alahmer
,
A.
,
Zhao
,
R.
,
Prorok
,
B.
, and
Sakib
,
N.
,
2022
, “
Shear and Fatigue Properties of Lead-Free Solder Joints: Modeling and Microstructure Analysis
,”
ASME J. Electron. Packag.
,
145
(
2
), p.
021007
.10.1115/1.4055318
28.
Fahim
,
A.
,
Hasan
,
S. M. K.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2020
, “
Investigation on the Mechanical Behavior Evolution Occurring in Lead Free Solder Joints Exposed to Thermal Cycling
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
),
IEEE
, Orlando, FL, June 3–30, pp.
1486
1495
.10.1109/ECTC32862.2020.00235
29.
Hasan
,
S. M. K.
,
Fahim
,
A.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2019
, “
Evolution of the Mechanical Behavior of Lead Free Solders Exposed to Thermal Cycling
,”
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
IEEE
, Las Vegas, NV, May 28–31, pp.
1332
1341
.
30.
Raj
,
A.
,
Sanders
,
T.
,
Sridhar
,
S.
,
Evans
,
J. L.
,
Bozack
,
M. J.
,
Johnson
,
W. R.
, and
Carpenter
,
D. M.
,
2019
, “
Thermal Shock Reliability of Isothermally Aged Doped Lead-Free Solder With Semiparametric Estimation
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
6
), pp.
1082
1093
.10.1109/TCPMT.2019.2909052
31.
Coyle
,
R. J.
,
Sweatman
,
K.
, and
Arfaei
,
B.
,
2015
, “
Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends
,”
JOM
,
67
(
10
), pp.
2394
2415
.10.1007/s11837-015-1595-1
32.
Nozaki
,
M.
,
Sakane
,
M.
, and
Tsukada
,
Y.
,
2008
, “
Crack Propagation Behavior of Sn–3.5 Ag Solder in Low Cycle Fatigue
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1729
1736
.10.1016/j.ijfatigue.2008.02.010
33.
ASTM
,
2012
, “
606-04 Standard Practice for Strain-Controlled Fatigue Testing
,”
ASTM International
,
West Conshohocken, PA
, pp.
12959
19428
.
34.
Lee
,
H.-T.
, and
Huang
,
K.-C.
,
2016
, “
Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-XAg-0.7 Cu
,”
J. Electron. Mater.
,
45
(
12
), pp.
6102
6112
.10.1007/s11664-016-4773-1
35.
Lee
,
H.-T.
,
Lin
,
H.-S.
,
Lee
,
C.-S.
, and
Chen
,
P.-W.
,
2005
, “
Reliability of Sn–Ag–Sb Lead-Free Solder Joints
,”
Mater. Sci. Eng. A
,
407
(
1–2
), pp.
36
44
.10.1016/j.msea.2005.07.049
36.
Park
,
T.-S.
, and
Lee
,
S.-B.
,
2005
, “
Low Cycle Fatigue Testing of Ball Grid Array Solder Joints Under Mixed-Mode Loading Conditions
,”
ASME J. Electron. Packag.
, 127(3), pp.
237
244
.10.1115/1.1871192
37.
Wei
,
X.
,
Su
,
S.
,
Ali
,
H.
,
Suhling
,
J.
, and
Lall
,
P.
,
2020
, “
Fatigue Performance of Doped SAC Solder Joints in BGA Assembly
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Orlando, FL, July 21–23, pp.
1035
1042
.10.1109/ITherm45881.2020.9190479
38.
Su
,
S.
,
Fu
,
N.
,
John Akkara
,
F.
, and
Hamasha
,
S.
,
2018
, “
Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031005
.10.1115/1.4040105
39.
Wong
,
E. H.
,
Seah
,
S. K. W.
,
Caers
,
J.
, and
Lai
,
Y.-S.
,
2014
, “
Frequency-Dependent Strain–Life Characteristics of Sn1. 0Ag0. 1Cu Solder on Cupper Pad at High Cyclic Frequency
,”
Int. J. Fatigue
,
59
, pp.
43
49
.10.1016/j.ijfatigue.2013.09.016
40.
Chen
,
Y.
,
Jia
,
J.
,
Fu
,
H.
, and
Zeng
,
Z.
,
2016
, “
Analysis of the BGA Solder Sn–3.0 Ag–0.5 Cu Crack Interface and a Prediction of the Fatigue Life Under Tensile Stress
,”
Int. J. Fatigue
,
87
, pp.
216
224
.10.1016/j.ijfatigue.2016.02.003
41.
Jian
,
M.
,
Su
,
S.
,
Hamasha
,
S.
,
Hamasha
,
M. M.
, and
Alkhazali
,
A.
,
2021
, “
Fatigue Properties and Microstructure of SnAgCu Bi-Based Solder Joint
,”
ASME J. Electron. Packag.
,
143
(
1
), p.
011008
.10.1115/1.4047341
42.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2002
, “
Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders
,”
J. Electron. Mater.
,
31
(
5
), pp.
456
465
.10.1007/s11664-002-0100-0
43.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
,
1996
, “
Energy Approach to the Fatigue of 60/40 Solder: Part II—Influence of Hold Time and Asymmetric Loading
,”
ASME J. Electron. Packag.
, 118(2), pp.
67
71
.10.1115/1.2792134
44.
Su
,
S.
,
Akkara
,
F.
,
Dawahdeh
,
A.
,
Borgesen
,
P.
, and
Qasaimeh
,
A.
,
2017
, “
Solder Joint Reliability in Isothermal Varying Load Cycling
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Orlando, FL, May 30–June 2, pp.
1331
1336
.10.1109/ITHERM.2017.7992636
45.
Hamasha
,
S.
,
Akkara
,
F.
,
Su
,
S.
,
Ali
,
H.
, and
Borgesen
,
P.
,
2018
, “
Effect of Cycling Amplitude Variations on SnAgCu Solder Joint Fatigue Life
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
8
(
11
), pp.
1896
1904
.10.1109/TCPMT.2018.2795347
46.
Akkara
,
F. J.
,
Hamasha
,
S.
,
Alahmer
,
A.
,
Evans
,
J.
,
Belhadi
,
M. E. A.
, and
Wei
,
X.
,
2022
, “
The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys
,”
Materials (Basel
),
15
(
19
), p.
6759
.10.3390/ma15196759
You do not currently have access to this content.