A novel reliability evaluation procedure of lead-free solders used in electronic packaging (EP) subjected to thermomechanical loading is proposed. A solder ball is represented by finite elements (FEs). Major sources of nonlinearities are incorporated as realistically as practicable. Uncertainties in all design variables are quantified using available information. The thermomechanical loading is represented by five design parameters and uncertainties associated with them are incorporated. Since the performance or limit state function (LSF) of such complicated problem is implicit in nature, it is approximately generated explicitly in the failure region with the help of a completely improved response surface method (RSM)-based approach and the universal Kriging method (KM). The response surface (RS) is generated by conducting as few deterministic nonlinear finite element analyses as possible by integrating several advanced factorial mathematical concepts producing compounding beneficial effect. The accuracy, efficiency, and application potential of the procedure are established with the help of Monte Carlo simulation (MCS) and the results from laboratory investigation reported in the literature. The study conclusively verified the proposed method. Similar studies can be conducted to fill the knowledge gap for cases where the available analytical and experimental studies are limited or extend the information to cases where reliability information is unavailable. The study showcased how reliability information can be extracted with the help of multiple deterministic analyses. The authors believe that they proposed an alternative to the classical MCS technique.

References

1.
Desai
,
C. S.
,
Somasundaram
,
S.
, and
Frantziskonis
,
G.
,
1986
, “
A Hierarchical Approach for Constitutive Modelling of Geologic Materials
,”
Int. J. Numer. Anal. Met.
,
10
(
3
), pp.
225
257
.
2.
Desai
,
C. S.
,
2015
, “
Constitutive Modeling of Materials and Contacts Using the Disturbed State Concept—Part 1: Background and Analysis
,”
Comput. Struct.
,
146
, pp.
214
233
.
3.
Desai
,
C. S.
,
2015
, “
Constitutive Modeling of Materials and Contacts Using the Disturbed State Concept—Part 2: Validations at Specimen and Boundary Value Problem Levels
,”
Comput. Struct.
,
146
, pp.
234
251
.
4.
Higgins
,
W.
,
Chakraborty
,
T.
, and
Basu
,
D.
,
2013
, “
A High Strain‐Rate Constitutive Model for Sand and Its Application in Finite‐Element Analysis of Tunnels Subjected to Blast
,”
Int. J. Numer. Anal. Met.
,
37
(
15
), pp.
2590
2610
.
5.
Zhou
,
M.
,
Huang
,
S.
,
Hu
,
J.
,
Lei
,
Y.
,
Xiao
,
Y.
,
Li
,
B.
,
Yan
,
S.
, and
Zou
,
F.
,
2017
, “
A Density-Dependent Modified Drucker-Prager Cap Model for Die Compaction of Ag57. 6-Cu22. 4-Sn10-In10 Mixed Metal Powders
,”
Powder Technol.
,
305
, pp.
183
196
.
6.
Basaran
,
C.
, and
Nie
,
S.
,
2004
, “
An Irreversible Thermodynamics Theory for Damage Mechanics of Solids
,”
Int. J. Damage Mech.
,
13
(
3
), pp.
205
223
.
7.
Gomez
,
J.
, and
Basaran
,
C.
,
2005
, “
A Thermodynamics Based Damage Mechanics Constitutive Model for Low Cycle Fatigue Analysis of Microelectronics Solder Joints Incorporating Size Effects
,”
Int. Solids Struct.
,
42
(
13
), pp.
3744
3772
.
8.
Sosnovskiy
,
L. A.
, and
Sherbakov
,
S. S.
,
2016
, “
Mechanothermodynamic Entropy and Analysis of Damage State of Complex Systems
,”
Entropy
,
18
(
7
), p.
268
.
9.
Motalab
,
M.
,
Cai
,
Z.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2012
, “
Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
910
922
.
10.
Basit
,
M. M.
,
Motalab
,
M.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2014
, “
The Effects of Aging on the Anand Viscoplastic Constitutive Model for SAC305 Solder
,” Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
112
126
.
11.
Azizsoltani
,
H.
,
Kazemi
,
M. T.
, and
Javanmardi
,
M. R.
,
2014
, “
An Anisotropic Damage Model for Metals Based on Irreversible Thermodynamics Framework
,”
Iran. J. Sci. Technol.
,
38
(
C1
), pp.
157
173
.http://ijstc.shirazu.ac.ir
12.
Khaloo
,
A. R.
,
Javanmardi
,
R.
, and
Azizsoltani
,
H.
,
2014
, “
Numerical Characterization of Anisotropic Damage Evolution in Iron Based Materials
,”
Sci. Iran. Int. J. Sci. Technol.
,
21
(
1
), pp.
53
56
.
13.
Desai
,
C. S.
, and
Whitenack
,
R.
,
2001
, “
Review of Models and the Disturbed State Concept for Thermomechanical Analysis in Electronic Packaging
,”
ASME J. Electron. Packag.
,
123
(
1
), pp.
19
33
.
14.
Shen
,
C.
,
Zhao
,
C.
,
Hai
,
Z.
,
Zhang
,
J.
,
Bozack
,
M. J.
,
Suhling
,
J. C.
, and
Evans
,
J. L.
,
2015
, “
Sn-Ag-Cu Solder Joints Interconnection Reliability of BGA Package During Thermal Aging and Cycling
,”
International Symposium on Microelectronics
, Orlando, FL, Oct. 27–29, pp.
135
140
.
15.
Zwick
,
J. W.
, and
Desai
,
C. S.
,
1999
, “
Structural Reliability of PBGA Solder Joints With the Disturbed State Concept
,” Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference, Advances in Electronic Packaging (Interpack '99), Maui, HI, June 13–19, pp.
1865
1874
.
16.
Whitenack
,
R. D.
,
2004
, “
Design and Analysis of Solder Connections Using Accelerated Approximate Procedure With Disturbed State Concept
,”
Ph.D. dissertation
, The University of Arizona, Tucson, AZ.https://repository.arizona.edu/bitstream/handle/10150/280662/azu_td_3145145_sip1_m.pdf?sequence=1
17.
Sane
,
S. M.
,
2007
, “
Disturbed State Concept Based Constitutive Modeling for Reliability Analysis of Lead Free Solders in Electronic Packaging and for Prediction of Glacial Motion
,” Ph.D. dissertation, The University of Arizona, Tucson, AZ.
18.
Tucker
,
J. P.
,
Chan
,
D. K.
,
Subbarayan
,
G.
, and
Handwerker
,
C. A.
,
2014
, “
Maximum Entropy Fracture Model and Its Use for Predicting Cyclic Hysteresis in Sn3. 8Ag0. 7Cu and Sn3. 0Ag0. 5 Solder Alloys
,”
Microelectron. Reliab.
,
54
(
11
), pp.
2513
2522
.
19.
Desai
,
C. S.
,
2000
,
Mechanics of Materials and Interfaces: The Disturbed State Concept
,
CRC Press
,
Boca Raton, FL
.
20.
Whitenack
,
R.
,
Desai
,
C.
, and
Rassaian
,
M.
,
2007
, “
Parametric and Optimal Design in Electronic Packaging Using DSC: Computational, Geometrical, and Material Aspects
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
356
365
.
21.
Desai
,
C. S.
,
2016
, “
Disturbed State Concept as Unified Constitutive Modeling Approach
,”
J. Rock Mech. Geotech. Eng.
,
8
(
3
), pp.
277
293
.
22.
Perzyna
,
P.
,
1966
, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.
23.
Desai
,
C. S.
,
2017
, “
Unified Approach for Constitutive Modelling for Geologic Materials and Discontinuities
,”
Numerical Methods in Geomechanics
, 6th ed., Vol.
1
,
Routledge
,
Abingdon, UK
, pp.
45
54
.
24.
Baladi
,
G. Y.
, and
Rohani
,
B.
,
1984
, “
Development of an Elastic-Viscoplastic Constitutive Relationship for Earth Materials
,”
Mechanics of Engineering Materials
,
Wiley
,
New York
, pp.
23
43
.
25.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
,
2003
, “
Time-Independent Mechanical and Physical Properties of the Ternary 95.5 Sn-3.9 Ag-0.6 Cu Solder
,”
J. Electron. Mater.
,
32
(
3
), pp.
142
151
.
26.
Xiao
,
Q.
, and
Armstrong
,
W. D.
,
2005
, “
Tensile Creep and Microstructural Characterization of Bulk Sn3. 9Ag0. 6Cu Lead-Free Solder
,”
J. Electron. Mater.
,
34
(
2
), pp.
196
211
.
27.
Tummala
,
R. R.
, and
Rymaszewski
,
E. J.
,
1989
,
Microelectronics Packaging Handbook
,
von Nostrand Reinhold
,
New York
.
28.
Zeng
,
Q. L.
,
Wang
,
Z. G.
,
Xian
,
A. P.
, and
Shang
,
J. K.
,
2005
, “
Cyclic Softening of the Sn-3.8 Ag-0.7 Cu Lead-Free Solder Alloy With Equiaxed Grain Structure
,”
J. Electron. Mater.
,
34
(
1
), pp.
62
67
.
29.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
,
New York
.
30.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
31.
Box
,
G. E.
,
1954
, “
The Exploration and Exploitation of Response Surfaces: Some General Considerations and Examples
,”
Biometrics
,
10
(
1
), pp.
16
60
.
32.
Gaxiola-Camacho
,
J. R.
,
Azizsoltani
,
H.
,
Villegas-Mercado
,
F. J.
, and
Haldar
,
A.
,
2017
, “
A Novel Reliability Technique for Implementation of Performance-Based Seismic Design of Structures
,”
Eng. Struct.
,
142
, pp.
137
147
.
33.
Gaxiola-Camacho
,
J. R.
,
Haldar
,
A.
,
Azizsoltani
,
H.
,
Valenzuela-Beltran
,
F.
, and
Reyes-Salazar
,
A.
,
2017
, “
Performance-Based Seismic Design of Steel Buildings Using Rigidities of Connections
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng.
,
4
(
1
), p.
4017036
.
34.
Villegas-Mercado
,
F. J.
,
Azizsoltani
,
H.
,
Gaxiola-Camacho
,
J. R.
, and
Haldar
,
A.
,
2017
, “
Seismic Reliability Evaluation of Structural Systems for Different Soil Conditions
,”
Int. J. Geotech. Earthquake Eng.
,
8
(
2
), pp.
23
38
.
35.
Azizsoltani
,
H.
,
Gaxiola-Camacho
,
J. R.
, and
Haldar
,
A.
,
2018
, “
Site-Specific Seismic Design of Damage Tolerant Structural Systems Using a Novel Concept
,”
Bull. Earthquake Eng.
,
16
(
9
), pp.
3819
3843
.
36.
Khuri
,
A. I.
, and
Cornell
,
J. A.
,
1996
,
Response Surfaces: Designs and Analyses
,
CRC Press
,
New York
.
37.
Box
,
G. E.
, and
Wilson
,
K. B.
,
1992
, “
On the Experimental Attainment of Optimum Conditions
,”
Breakthroughs in Statistics
,
Springer
,
New York
, pp.
270
310
.
38.
Lucas
,
J. M.
,
1974
, “
Optimum Composite Designs
,”
Technometrics
,
16
(
4
), pp.
561
567
.
39.
Chakraborty
,
S.
, and
Sen
,
A.
,
2014
, “
Adaptive Response Surface Based Efficient Finite Element Model Updating
,”
Finite Elem. Anal. Des.
,
80
, pp.
33
40
.
40.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
South. Afr. Inst. Min. Metall. Online J.
,
52
(
6
), pp.
119
139
.http://journals.co.za/content/saimm/52/9/AJA0038223X_4858
41.
Lichtenstern
,
A.
,
2013
, “
Kriging Methods in Spatial Statistics
,” Ph.D. dissertation, Technische Universität München, München, Germany.
42.
Wackernagel
,
H.
,
2013
,
Multivariate Geostatistics: An Introduction With Applications
,
Springer Science & Business Media
,
Berlin
.
43.
Azizsoltani
,
H.
, and
Haldar
,
A.
,
2017
, “
Intelligent Computational Schemes for Designing More Seismic Damage-Tolerant Structures
,”
J. Earthquake Eng.
(epub).
44.
Webster
,
R.
, and
Oliver
,
M. A.
,
2007
,
Geostatistics for Environmental Scientists
,
Wiley
,
Hoboken, NJ
.
45.
Cressie
,
N.
,
2015
,
Statistics for Spatial Data
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.