Hotspots on a microelectronic package can severely hurt the performance and long-term reliability of the chip. Thermoelectric coolers (TECs) can provide site-specific and on-demand cooling of hot spots in microprocessors. We develop a 3D compact model for fast and accurate modeling of a TEC device integrated inside an electronic package. A 1D compact model of a TEC is first built in SPICE and validated for steady-state and transient behavior against a finite-volume model. The 1D compact model of the TEC is then incorporated into a 3D compact model of a prototype electronic package. The results from the compact model for the packaged TEC are in good agreement with a finite-volume based model, which confirms the compact model's ability to accurately model the TEC's interaction with the package. Analysis of packaged TECs using this 3D compact model shows that (i) moving TECs closer to the chip results in faster response time and an increase in maximum cooling, (ii) high thermal contact resistance within the thermoelectric cooler significantly degrades performance of the device, and (iii) higher convective heat transfer coefficients (HTC) at the heat spreader surface increase steady-state cooling but decrease maximum transient cooling.

References

1.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
2.
Watwe
,
A.
, and
Viswanath
,
R.
,
2003
, “
Thermal Implications of Non-Uniform Die Power Map and CPU Performance
,”
Proceedings of InterPACK'03
,
Maui, HI
, July 6–11, p.
35044
.
3.
Mahajan
,
R.
,
Chiu
,
C. P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.10.1109/JPROC.2006.879800
4.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
(
6856
), pp.
597
602
.10.1038/35098012
5.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
,
2002
, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
,
297
(
5590
), pp.
2229
2232
.10.1126/science.1072886
6.
Shakouri
,
A.
, and
Zhang
,
Y.
,
2005
, “
On-Chip Solid-State Cooling for Integrated Circuits Using Thin-Film Microrefrigerators
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
65
69
.10.1109/TCAPT.2005.843219
7.
Tritt
,
T. M.
, and
Subramanian
,
M. A.
,
2006
, “
Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
,”
MRS Bull.
,
31
(
3
), pp.
188
194
.10.1557/mrs2006.44
8.
Bulman
,
G. E.
,
Siivola
,
E.
,
Shen
,
B.
, and
Venkatasubramanian
,
R.
,
2006
, “
Large External Delta T and Cooling Power Densities in Thin-Film Bi2Te3-Superlattice Thermoelectric Cooling Devices
,”
Appl. Phys. Lett.
,
89
(
12
), p.
122117
.10.1063/1.2353805
9.
Snyder
,
G. J.
,
Fleurial
,
J. P.
,
Caillat
,
T.
,
Yang
,
R. G.
, and
Chen
,
G.
,
2002
, “
Supercooling of Peltier Cooler Using a Current Pulse
,”
J. Appl. Phys.
,
92
(
3
), pp.
1564
1569
.10.1063/1.1489713
10.
Yang
,
R. G.
,
Chen
,
G.
,
Kumar
,
A. R.
,
Snyder
,
G. J.
, and
Fleurial
,
J. P.
,
2005
, “
Transient Cooling of Thermoelectric Coolers and Its Applications for Microdevices
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1407
1421
.10.1016/j.enconman.2004.07.004
11.
Zhou
,
Q.
,
Bian
,
Z.
, and
Shakouri
,
A.
,
2007
, “
Pulsed Cooling of Inhomogeneous Thermoelectric Materials
,”
J. Phys. D: Appl. Phys.
,
40
(
14
), pp.
4376
4381
.10.1088/0022-3727/40/14/037
12.
Gupta
,
M. P.
,
Sayer
,
M.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2011
, “
Ultrathin Thermoelectric Devices for On-Chip Peltier Cooling
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
9
), pp.
1395
1405
.10.1109/TCPMT.2011.2159304
13.
Sullivan
,
O.
,
Gupta
,
M. P.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2012
, “
Array of Thermoelectric Coolers for On-Chip Thermal Management
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
012005
.10.1115/1.4006141
14.
Mitrani
,
D.
,
Salazar
,
J.
,
Turo
,
A.
,
Garcia
,
M. J.
, and
Chavez
,
J. A.
,
2009
, “
One-Dimensional Modeling of TE Devices Considering Temperature-Dependent Parameters Using SPICE
,”
Microelectron. J.
,
40
(
9
), pp.
1398
1405
.10.1016/j.mejo.2008.04.001
15.
Mitrani
,
D.
,
Salazar
,
J.
,
Turo
,
A.
,
Garcia
,
M. J.
, and
Chavez
,
J. A.
,
2009
, “
Transient Distributed Parameter Electrical Analogous Model of TE Devices
,”
Microelectron. J.
,
40
(
9
), pp.
1406
1410
.10.1016/j.mejo.2008.06.038
16.
Tsai
,
H. L.
, and
Lin
,
J. M.
,
2010
, “
Model Building and Simulation of Thermoelectric Module Using Matlab/Simulink
,”
J. Electron. Mater.
,
39
(
9
), pp.
2105
2111
.10.1007/s11664-009-0994-x
17.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons, Inc.
,
New York
.
18.
Sullivan
,
O.
,
Alexandrov
,
B.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2011
, “
Compact Model of Thermoelectric Coolers on a Micro-Electronic Chip
,”
Proceedings of IMECE 2011
,
Denver, CO
, November 11–17, Vol. 10(B),
ASME
Paper No. IMECE2011-64881, pp.
953
960
.10.1115/IMECE2011-64881
You do not currently have access to this content.