The method is based on a microheater integrated next to a wire bonding pad (test pad) on a test chip. It is fabricated in CMOS technology without additional micromachining. The microheater consists of two polysilicon resistor elements, placed at opposite sides of the pad, operated in parallel using a constant voltage, each element extending over 30 × 70 μm with a resistance of ≈140 Ω at room temperature, and is operated based on Joule heating. The polysilicon is located at least 20 μm but not more than 50 μm from the pad aluminum. To characterize the microheater, Al serpentine resistors are placed on and between the heaters next to the pad, serving as resistive temperature detectors, having resistances of about 9.4 Ω at room temperature. With a constant operation voltage of 15 V, ≈140 mA of current and ≈2.1 W of heating power are generated, resulting in a heat flux of ≈500 MW/m2. The thermal resistance of the heater is 200 K/W (i.e., loss coefficient of 5 mW/K). The maximum temperature measured on one of the microheater resistors was above 396 °C and was reached using 18 V within less than 5 s of voltage application starting at room temperature. When heating from 101 °C to 138 °C, even faster heating is possible, allowing the performance of highly accelerated thermocycles. These cycles are applied to a ball bond on the test pad. Compared to the 20 min cycles used by a standard test, the new microheater device performed cycles lasting 10 ms (5 ms on, 5 ms off) which is 5 orders of magnitude faster. The released energy is typically 10 mJ per cycle. A 50 μm diameter ball was made using 25 μm diameter Au wire and bonded to the test pad. The effect of the microheater-cycling on the contact resistance values of ball bonds is described. Starting with typical contact resistance values around 2.5 mΩ, the increase observed is between 4% and 7% after 5 × 106 10 ms cycles (≈14 h).

References

1.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R.
, and
Christopher
,
M.
,
2004
, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
164
176
.10.1109/TEPM.2004.843109
2.
Breach
.
C.
,
Wulff
,
F.
,
Dittmer
,
K.
,
Calpito
,
D. R.
,
Garnier
,
M.
,
Boillot
,
V.
, and
Wei
,
T. C.
,
2004
, “
Reliability and Failure Analysis of Gold Ball Bonds in Fine and Ultra-Fine Pitch Applications
,”
Proceedings of the Semicon Singapore Technical Symposium
, Singapore, May 4–6.
3.
International Technology Roadmap for Semiconductors (ITRS)
,
2009
, http://www.itrs.net/home.html
4.
Yang
,
S.
,
Xiang
,
D.
,
Bryant
,
A.
,
Mawby
,
P.
,
Ran
,
L.
, and
Tavner
,
P.
,
2010
, “
Condition Monitoring for Device Reliability in Power Electronic Converters: A Review
,”
IEEE Trans. Power Electron.
,
25
(
11
), pp.
2734
2752
.10.1109/TPEL.2010.2049377
5.
Aguila
,
M.
,
Felipe
,
R.
,
Velarde
,
A.
, and
Edpan
,
J.
,
1997
, “
Ball Bond Characterization: An Intensive Analysis on Ball Size and Shear Test Results and Applicability to Existing Standards
,”
Proceedings of the IEEE/CPMT Electronic Packaging Technology Conference
, Singapore, October 8–10, pp. 46–51.10.1109/EPTC.1997.723884
6.
Ji
,
B.
,
Pickert
,
V.
,
Zahawi
,
B.
, and
Zhang
,
M.
,
2012
, “
In-Situ Bond Wire Health Monitoring Circuit for IGBT Power Modules
,”
Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives
, pp.
A121
.
7.
Kurabayashi
,
K.
, and
Goodson
,
K. E.
,
1998
, “
Precision Measurement and Mapping of Die-Attach Thermal Resistance
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
21
(
3
), pp.
506
514
.10.1109/95.725215
8.
Darhuber
,
A. A.
,
Valentino
,
J. P.
,
Troian
,
S. M.
, and
Wagner
,
S.
,
2003
, “
Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays
,”
J. Microelectromech. Syst.
,
12
(
6
), pp.
873
879
.10.1109/JMEMS.2003.820267
9.
Cheng
,
X.
,
Wang
,
Y.
,
Hanein
,
Y.
,
Böhringer
,
K. F.
, and
Ratner
,
B. D.
,
2004
, “
Novel Cell Patterning Using Microheater-Controlled Thermoresponsive Plasma Films
,”
J. Biomed. Mater. Res. Part A
,
70
(
2
), pp.
159
168
.10.1002/jbm.a.30053
10.
Yin
,
Z.
,
Prosperetti
,
A.
, and
Kim
,
J.
,
2004
, “
Bubble Growth on an Impulsively Powered Microheater
,”
Int. J. Heat Mass Transfer
,
47
(
5
), pp.
1053
1067
.10.1016/j.ijheatmasstransfer.2003.07.015
11.
Zhang
,
K. L.
,
Chou
,
S. K.
, and
Ang
,
S.S.
,
2007
, “
Fabrication, Modeling and Testing of a Thin Film Au/Ti Microheater
,”
Int. J. Therm. Sci.
,
46
(
6
), pp.
580
588
.10.1016/j.ijthermalsci.2006.08.002
12.
Zhang
,
K.
,
Rossi
,
C.
,
Petrantoni
,
M.
, and
Mauran
,
N.
,
2008
, “
A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials With a Au/Pt/Cr Microheater
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
832
836
.10.1109/JMEMS.2008.926144
13.
Baroncini
,
M.
,
Placidi
,
P.
,
Cardinali
,
G. C.
, and
Scorzoni
,
A.
,
2004
, “
Thermal Characterization of a Microheater for Micromachined Gas Sensors
,”
Sens. Actuators
, A,
115
(
1
), pp.
8
14
.10.1016/j.sna.2004.03.012
14.
Rossi
,
C.
,
Temple-Boyer
,
P.
, and
Estève
,
D.
,
1998
, “
Realization and Performance of Thin SiO2/SiNx Membrane for Microheater Applications
,”
Sens. Actuators
, A,
64
(
3
), pp.
241
245
.10.1016/S0924-4247(97)01627-0
15.
Graf
,
M.
,
Barrettino
,
D.
,
Taschini
,
S.
,
Hagleitner
,
C.
,
Hierlemann
,
A.
, and
Baltes
,
H.
,
2004
, “
Metal Oxide-Based Monolithic Complementary Metal Oxide Semiconductor Gas Sensor Microsystem
,”
Anal. Chem.
,
76
(
15
), pp.
4437
4445
.10.1021/ac035432h
16.
Barrettino
,
D.
,
Graf
,
M.
,
Song
,
W. H.
,
Kirstein
,
K.-U.
,
Hierlemann
,
A.
, and
Baltes
,
H.
,
2004
, “
Hotplate-Based Monolithic CMOS Microsystems for Gas Detection and Material Characterization for Operating Temperatures Up to 500 °C
,”
IEEE J. Solid-State Circuits
,
39
(
7
), pp.
1202
1207
.10.1109/JSSC.2004.829929
17.
Sebastian
,
A.
, and
Wiesmann
,
D.
,
2008
, “
Modeling and Experimental Identification of Silicon Microheater Dynamics: A Systems Approach
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
911
920
.10.1109/JMEMS.2008.926980
18.
Maurya
,
D. K.
,
Das
,
S.
, and
Lahiri
,
S. K.
,
2005
, “
Silicon MEMS Vaporizing Liquid Microthruster With Internal Microheater
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
966
970
.10.1088/0960-1317/15/5/010
19.
Mayer
,
M.
,
2008
, “
Integrated Microheater for Accelerated Thermal Cycling of Microelectronic Ball Bonds
,”
Proceedings of the IMAPS HiTEC Conference
,
Albuquerque, NM
, May 12–15.
You do not currently have access to this content.