We report a 40% improvement of the thermal conductivity of graphite nanoplatelets–epoxy composites by chemical functionalization of graphite nanoplatelets utilizing nitric acid treatment, which also serves to enhance the spreadability of the material. FTIR and Raman spectroscopy confirmed the presence of a variety of oxygen functional groups at the edges and basal plane of the functionalized graphite nanoplatelets, which contributed to improved interaction with the polymer matrix. A comparative statistical analysis of the particle size distributions in pristine and functionalized graphite nanoplatelets based on scanning electron microscopy showed an increasing degree of exfoliation of the functionalized material. We compare the performance of the functionalized graphite nanoplatelets and carbon nanotubes as fillers in the polymer matrix and discuss the prospects for utilization of graphite nanoplatelets-based thermal interface materials in electronic packaging.

References

1.
Schelling
,
P. K.
,
Shi
,
L.
, and
Goodson
,
K. E.
, 2005, “
Managing Heat for Electronics
,”
Mater. Today
,
8
, pp.
30
35
.
2.
Samson
,
E. C.
,
Machiroutu
,
S. V.
,
Chang
,
J.Y.
,
Santos
,
I.
,
Hermerding
,
J.
,
Dani
,
A.
,
Prasher
,
R.
, and
Song
,
D. W.
, 2005, “
Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel® Centrino™ Mobile Technology
,”
Intel Technol. J.
,
9
, pp.
75
86
.
3.
Prasher
,
R.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
, pp.
1571
1586
.
4.
Chung
,
D. D. L.
, 2001, “
Materials for Thermal Conduction
,”
Appl. Therm. Eng.
,
21
, pp.
1593
1605
.
5.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
, pp.
2767
2769
.
6.
Leong
,
C. K.
, and
Chung
,
D. D. L.
, 2004, “
Carbon Black Dispersions and Carbon-Silver Combinations as Thermal Pastes That Surpass Commercial Silver and Ceramic Pastes in Providing High Thermal Contact Conductance
,”
Carbon
,
42
, pp.
2323
2327
.
7.
Yasmin
,
A.
, and
Daniel
,
I. M.
, 2004, “
Mechanical and Thermal Properties of Graphite Platelet/Epoxy Composites
,”
Polymer
,
45
, pp.
8211
8219
.
8.
Bryning
,
M. B.
,
Milkie
,
D. E.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
, 2005, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
87
,
161909
.
9.
Yu
,
A.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
, 2006, “
Effect of Single-Walled Carbon Nanotube Purity on the Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Appl. Phys. Lett.
,
89
, p.
133102
.
10.
Fukushima
,
H.
,
Drzal
,
L. T.
,
Rook
,
B. P.
, and
Rich
,
M. J.
, 2006, “
Thermal Conductivity of Exfoliated Graphite Nanocomposites
,”
J. Therm. Anal. Calorim.
,
85
, pp.
235
238
.
11.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
, 2007, “
Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
, pp.
7565
7569
.
12.
Yu
,
A.
,
Ramesh
,
P.
,
Sun
,
X. B.
,
Bekyarova
,
E.
,
Itkis
,
M. E.
, and
Haddon
,
R. C.
, 2008, “
Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet—Carbon Nanotube Filler for Epoxy Composites
,”
Adv. Mater.
,
20
, pp.
4740
4744
.
13.
Lin
,
C.
, and
Chung
,
D. D. L.
, 2009, “
Graphite Nanoplatelet Pastes vs. Carbon Black Pastes as Thermal Interface Materials
,”
Carbon
,
47
, pp.
295
305
.
14.
Veca
,
L. M.
,
Meziani
,
M. J.
,
Wang
,
W.
,
Wang
,
X.
,
Lu
,
F. S.
,
Zhang
,
P. Y.
,
Lin
,
Y.
,
Fee
,
R.
,
Connell
,
J. W.
, and
Sun
,
Y. P.
, 2009, “
Carbon Nanosheets for Polymeric Nanocomposites With High Thermal Conductivity
,”
Adv. Mater.
,
21
, pp.
2088
2092
.
15.
Debelak
,
B.
, and
Lafdi
,
K.
, 2007, “
Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties
,”
Carbon
,
45
, pp.
1727
1734
.
16.
Ganguli
,
S.
,
Roy
,
A. K.
, and
Anderson
,
D. P.
, 2008, “
Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites
,”
Carbon
,
46
, pp.
806
817
.
17.
Keblinski
,
P.
, and
Cleri
,
F.
, 2004, “
Contact Resistance in Percolating Networks
,”
Phys. Rev. B
,
69
,
184201
.
18.
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
,
95
, pp.
8136
8144
.
19.
Shenogina
,
N.
,
Shenogin
,
S.
,
Xue
,
L.
, and
Keblinski
,
P.
, 2005, “
On the Lack of Thermal Percolation in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
87
,
133106
.
20.
Gao
,
J.
,
Zhao
,
B.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
,
Hu
,
H.
,
Kranak
,
V.
,
Yu
,
A.
, and
Haddon
,
R. C.
, 2006, “
Chemical Engineering of the Single-Walled Carbon Nanotube-Nylon 6 Interface
,”
J. Am. Chem. Soc.
,
128
, pp.
7492
7496
.
21.
Bekyarova
,
E.
,
Thostenson
,
E. T.
,
Yu
,
A.
,
Itkis
,
M. E.
,
Fakhrutdinov
,
D.
,
Chou
,
T. W.
, and
Haddon
,
R. C.
, 2007, “
Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber-Epoxy Composites
,”
J. Phys. Chem. C
,
111
, pp.
17865
17871
.
22.
Shenogin
,
S.
,
Bodapati
,
A.
,
Xue
,
L.
,
Ozisik
,
R.
, and
Keblinski
,
P.
, 2004, “
Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
, pp.
2229
2231
.
23.
Prasher
,
R.
, 2007, “
Thermal Conductance of Single-Walled Carbon Nanotubes Embedded in an Elastic Half-Space
,”
Appl. Phys. Lett.
,
90
,
143110
.
24.
Martin
,
W. H.
, and
Brocklehurst
,
J. E.
, 1964, “
The Thermal Expansion Behaviour of Pyrolytic Graphite Bromine Residue Compounds
,”
Carbon
,
1
, pp.
133
141
.
25.
Anderson
,
S. H.
, and
Chung
,
D. D. L.
, 1984, “
Exfoliation of Intercalated Graphite
,”
Carbon
,
22
, pp.
253
263
.
26.
Chung
,
D. D. L.
, 1987, “
Exfoliation of Graphite
,”
J. Mater. Sci.
,
22
, pp.
4190
4198
.
27.
Weng
,
W. G.
,
Chen
,
G. H.
,
Wu
,
D. J.
,
Lin
,
Z. Y.
, and
Yan
,
W. L.
, 2003, “
Preparation and Characterizations of Nanoparticles from Graphite Via an Electrochemically Oxidizing Method
,”
Synth. Met.
,
139
, pp.
221
225
.
28.
Ramesh
,
P.
,
Bhagyalakshmi
,
S.
, and
Sampath
,
S.
, 2004, “
Preparation and Physicochemical and Electrochemical Characterization of Exfoliated Graphite Oxide
,”
J. Colloid Interface Sci.
,
274
, pp.
95
102
.
29.
Hontoria-Lucas
,
C.
,
López-Peinado
,
A. J.
,
López-González
,
J. de D.
,
Rojas-Cervantes
,
M. L.
, and
Martín-Aranda
,
R. M.
, 1995, “
Study of Oxygen-Containing Groups in a Series of Graphite Oxides—Physical and Chemical Characterization
,”
Carbon
,
33
, pp.
1585
1592
.
30.
Szabo
,
T.
,
Berkesi
,
O.
,
Forgo
,
P.
,
Josepovits
,
K.
,
Sanakis
,
Y.
,
Petridis
,
D.
, and
Dekany
,
I.
, 2006, “
Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides
,”
Chem. Mater.
,
18
, pp.
2740
2749
.
31.
Chen
,
G. H.
,
Weng
,
W. G.
,
Wu
,
D. J.
,
Wu
,
C. L.
,
Lu
,
J. R.
,
Wang
,
P. P.
, and
Chen
,
X. F.
, 2004, “
Preparation and Characterization of Graphite Nanosheets From Ultrasonic Powdering Technique
,”
Carbon
,
42
, pp.
753
759
.
32.
Kinoshita
,
K.
, 1988,
Carbon Electrochemical and Physicochemical Properties
,
Wiley
,
New York
.
33.
Mawhinney
,
D. B.
,
Naumenko
,
V.
,
Kuznetsova
,
A.
,
Yates
,
J. T. J.
,
Liu
,
J.
, and
Smalley
,
R. E.
, 2000, “
Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298 K
,”
J. Am. Chem. Soc.
,
122
, pp.
2383
2384
.
34.
Ramesh
,
P.
, and
Sampath
,
S.
, 2001, “
Electrochemical and Spectroscopic Characterization of Quinone Functionalized Exfoliated Graphite
,”
Analyst
,
126
, pp.
1872
1877
.
35.
Kim
,
U. J.
,
Furtado
,
C. A.
,
Liu
,
X. M.
,
Chen
,
G. G.
, and
Eklund
,
P. C.
, 2005, “
Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes
,”
J. Am. Chem. Soc.
,
127
, pp.
15437
15445
.
36.
Niyogi
,
S.
,
Bekyarova
,
E.
,
Itkis
,
M. E.
,
McWilliams
,
J. L.
,
Hamon
,
M. A.
, and
Haddon
,
R. C.
, 2006, “
Solution Properties of Graphite and Graphene
,”
J. Am. Chem. Soc.
,
128
, pp.
7720
7721
.
37.
Tuinstra
,
F.
, and
Koenig
,
J. L.
, 1970, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
, pp.
1126
1130
.
38.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Eklund
,
P. C.
, and
Chung
,
D. D. L.
, 1977, “
Lattice-Vibrations in Graphite and Intercalation Compounds of Graphite
,”
Mater. Sci. Eng.
,
31
, pp.
141
152
.
39.
Ferrari
,
A. C.
, and
Robertson
,
J.
, 2000, “
Interpretation of Raman Spectra of Disordered and Amorphous Carbon
,”
Phys. Rev. B
,
61
, pp.
14095
14107
.
40.
Hung
,
M. T.
,
Choi
,
O.
,
Ju
,
Y. S.
, and
Hahn
,
H. T.
, 2006, “
Heat Conduction in Graphite-Nanoplatelet-Reinforced Polymer Nanocomposites
,”
Appl. Phys. Lett.
,
89
,
023117
.
41.
Sun
,
X.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
, 2010, “
Dependence of the Thermal Conductivity of Two-Dimensional Graphite Nanoplatelet-Based Composites on the Nanoparticle Size Distribution
,”
J. Phys.: Condens. Matter
22
, p.
334216
.
42.
Prasher
,
R. S.
,
Shipley
,
J.
,
Prstic
,
S.
,
Koning
,
P.
, and
Wang
,
J. L.
, 2003, “
Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials
,”
ASME J. Heat Transfer
,
125
, pp.
1170
1177
.
43.
Prasher
,
R. S.
,
Chang
,
J. Y.
,
Sauciuc
,
I.
,
Narasimhan
,
S.
,
Chau
,
D.
,
Chrysler
,
G.
,
Myers
,
A.
,
Prstic
,
S.
, and
Hu
,
C.
, 2005, “
Nano and Micro Technology-Based Next-Generation Package-Level Cooling Solutions
,”
Intel Technol. J.
,
9
, pp.
285
296
.
44.
Lin
,
C. G.
, and
Chung
,
D. D. L.
, 2009, “
Rheological Behavior of Thermal Interface Pastes
,”
J. Electron. Mater.
,
38
, pp.
2069
2084
.
45.
Abadi
,
P. P. S. S.
,
Leong
,
C. K.
, and
Chung
,
D. D. L.
, 2009, “
Factors That Govern the Performance of Thermal Interface Materials
,”
J. Electron. Mater.
,
38
, pp.
175
192
.
46.
Wakharkar
,
V.
,
Matayabas
,
C.
,
Lehaman
,
E.
,
Manepalli
,
R.
,
Renavikar
,
M.
,
Jayaraman
,
S.
, and
LeBonheur
,
V.
, 2005, “
Materials Technologies for Thermomechanical Management of Organic Package
,”
Intel Technol. J.
,
9
, pp.
309
323
.
47.
Leong
,
C. K.
, and
Chung
,
D. D. L.
, 2003, “
Carbon Black Dispersions as Thermal Pastes That Surpass Solder in Providing High Thermal Contact Conductance
,”
Carbon
,
41
, pp.
2459
2469
.
48.
Xu
,
Y. S.
, and
Chung
,
D. D. L.
, 2000, “
Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments
,”
Compos. Interfaces
,
7
, pp.
243
256
.
49.
Xu
,
Y. S.
,
Chung
,
D. D. L.
, and
Mroz
,
C.
, 2001, “
Thermally Conducting Aluminum Nitride Polymer-Matrix Composites
,”
Composites, Part A
,
32
, pp.
1749
1757
.
You do not currently have access to this content.