As a thermal interface material, thermal grease (TG) has been extensively applied to facilitate heat dissipation in electronic devices. Despite the superior thermal conductivity of diamond, researches on diamond-containing TGs remain rare. In this study, four kinds of TGs in which diamond served as essential filler were prepared and hot disk technique was applied to measure their thermal conductivity k(TG). After two unoverlapped particle sizes were selected, the volumetric filler content, terminal group, and viscosity of a polydimethylsiloxane (PDMS) matrix were modified in sequence. Based on the preferred recipe of a single-filler TG, two double-filler TG series were prepared by retaining the large diamonds and replacing the small ones by Al2O3 or ZnO, respectively. Depending on the content, it was found that diamond was not always the best choice for small filler. The highest k(TG), which was 23 times greater than the original k(PDMS), appeared in a ZnO-containing double-filler grease (=3.52W/mK). The prediction for the maximum attainable thermal conductivity was preliminarily supported.

1.
Lu
,
X.
, and
Xu
,
G.
, 1997, “
Thermally Conductive Polymer Composites for Electronic Packaging
,”
J. Appl. Polym. Sci.
0021-8995,
65
(
13
), pp.
2733
2738
.
2.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
, 2006, Thermal Interface Materials—A Review of the State of the Art, Loughborough University.
3.
Zhou
,
W.
,
Qi
,
S.
,
Tu
,
C.
,
Zhao
,
H.
,
Wang
,
C.
, and
Kou
,
J.
, 2007, “
Effect of the Particle Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber
,”
J. Appl. Polym. Sci.
0021-8995,
104
(
2
), pp.
1312
1318
.
4.
Grujicic
,
M.
,
Zhao
,
C. L.
, and
Dusel
,
E. C.
, 2005, “
The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging
,”
Appl. Surf. Sci.
0169-4332,
246
(
1–3
), pp.
290
302
.
5.
Feng
,
Q. J.
,
Petroff
,
L. J.
,
Swarthout
,
D. E.
, and
Zhang
,
S.
, 2006, “
Thermally Conductive Phase Change Materials
,” U.S. Patent No. 7,074,490.
6.
Leong
,
C. K.
, and
Chung
,
D. D. L.
, 2003, “
Carbon Black Dispersions as Thermal Pastes That Surpass Solder in Providing High Thermal Contact Conductance
,”
Carbon
0008-6223,
41
(
13
), pp.
2459
2469
.
7.
Gowda
,
A.
,
Esler
,
D.
,
Paisner
,
S. N.
,
Tonapi
,
S.
,
Nagarkar
,
K.
, and
Srihari
,
K.
, 2005, “
Reliability Testing of Silicone-Based Thermal Greases
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium 2005
, pp.
64
71
.
8.
Zhong
,
H.
, and
Rubinsztajn
,
S.
, 2006, “
Organic Matrices Containing Nanomaterials to Enhance Bulk Thermal Conductivity
,” U.S. Patent No. 7,013,965.
9.
Anderson
,
H. R.
,
Booth
,
R. B.
,
David
,
L. D.
,
Neisser
,
M. O.
,
Sachdev
,
H. S.
, and
Takacs
,
M. A.
, 1993, “
Process for Making a Compliant Thermally Conductive Compound
,” U.S. Patent No. 5,213,704.
10.
Iruvanti
,
S.
,
Olsen
,
K. S.
, and
Sachdev
,
K. G.
, 2003, “
Polyester Dispersants for High Thermal Conductivity Paste
,” U.S. Patent No. 6,515,063.
11.
Leong
,
C. K.
,
Aoyagi
,
Y.
, and
Chung
,
D. D. L.
, 2006, “
Carbon Black Pastes as Coatings for Improving Thermal Gap-Filling Materials
,”
Carbon
0008-6223,
44
(
3
), pp.
435
440
.
12.
Xu
,
Y.
,
Luo
,
X.
, and
Chung
,
D. D. L.
, 2002, “
Lithium Doped Polyethylene-Glycol-Based Thermal Interface Pastes for High Thermal Contact Conductance
,”
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
188
191
.
13.
Chung
,
D. D. L.
, and
Lin
,
C.
, 2009, “
High-Performance Interface Materials for Improving Thermal Contacts
,” U.S. Patent No. 7,535,715.
14.
Khatri
,
P.
, 2005, “
Dry Thermal Interface Material
,” U.S. Patent No. 6,900,163.
15.
Tonapi
,
S. S.
,
Zong
,
H.
, and
Simone
,
D. L.
, 2009, “
Thermal Conductive Material Utilizing Electrically Conductive Nanoparticles
,” U.S. Patent No. 7,550,097.
16.
Chung
,
D. D. L.
, 2001, “
Materials for Thermal Conduction
,”
Appl. Therm. Eng.
1359-4311,
21
(
16
), pp.
1593
1605
.
17.
Hong
,
J.
,
Kim
,
S. H.
, and
Kim
,
D.
, 2007, “
Effect of Laser Irradiation on Thermal Conductivity of ZnO Nanofluids
,”
J. Phys.: Conf. Ser.
1742-6588,
59
(
1
), pp.
301
304
.
18.
Hanrahan
,
J. R.
, 1999, “
Thermally Conductive Polytrafluoroethylene Article
,” U.S. Patent No. 5,945,217.
19.
Iruvanti
,
S.
, and
Yankowski
,
E. L.
, 2003, “
Thermal Paste for Low Temperature Applications
,” U.S. Patent No. 6,656,389.
20.
Mita
,
K.
,
Tomaru
,
K.
,
Aoki
,
Y.
, and
Fujiki
,
H.
, 2009, “
Heat Dissipating Member
,” U.S. Patent No. 7,484,556.
21.
Yamada
,
K.
,
Endo
,
A.
, and
Mita
,
K.
, 2009, “
Silicon Grease Compositions
,” U.S. Patent No. 7,510,998.
22.
Kendall
,
P. E.
, 2008, “
Thermally Conductive Grease
,” U.S. Patent No. 7,404,853.
23.
Wang
,
Q.
,
Gao
,
W.
, and
Xie
,
Z.
, 2003, “
Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease
,”
J. Appl. Polym. Sci.
0021-8995,
89
(
9
), pp.
2397
2399
.
24.
Lin
,
K. L.
,
Tseng
,
T. C.
,
Liu
,
M. C.
, and
Liu
,
W. J.
, 2008, “
Thermal Interface Material Compound and Method of Fabricating the Same
,” U.S. Patent No. 7,445,727.
25.
Gustafsson
,
S. E.
,
Karawacki
,
E.
, and
Khan
,
M. N.
, 1979, “
Transient Hot-Strip Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids and Fluids
,”
J. Phys. D
0022-3727,
12
(
9
), pp.
1411
1421
.
26.
He
,
Y.
, 2005, “
Rapid Thermal Conductivity Measurement With a Hot Disk Sensor: Part 2. Characterization of Thermal Greases
,”
Thermochim. Acta
0040-6031,
436
(
1–2
), pp.
130
134
.
27.
Yamada
,
K.
, and
Tetsuka
,
H.
, 2004, “
Heat-Dissipating Silicone Grease Composition
,” U.S. Patent No. 7,538,075.
28.
Maxwell
,
J. C.
, 1904,
Treatise on Electricity and Magnetism
, 3rd ed.,
Oxford University Press
,
Oxford
.
29.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer Konstante von heterogene Substanzen
,”
Annalen der Physik
0003-3804,
24
, pp.
636
679
, in German.
30.
Agari
,
Y.
,
Ueda
,
A.
,
Tanaka
,
M.
, and
Nagai
,
S.
, 1990, “
Thermal Conductivity of a Polymer Filled With Particles in the Wide Range From Low to Super-High Volume Content
,”
J. Appl. Polym. Sci.
0021-8995,
40
(
5-6
), pp.
929
941
.
31.
Hiraki
,
A.
,
Ito
,
T.
,
Hatta
,
A.
,
Makita
,
H.
,
Nishimura
,
K.
, and
Ishizuka
,
H.
, 2002, “
Hydrophilic Diamond Particles and Method of Producing the Same
,” U.S. Patent No. 6,337,060.
32.
Krüger
,
A.
,
Liang
,
Y.
,
Jarre
,
G.
, and
Stegk
,
J.
, 2006, “
Surface Functionalisation of Detonation Diamond Suitable for Biological Applications
,”
J. Mater. Chem.
0959-9428,
16
(
24
), pp.
2322
2328
.
33.
Samuels
,
R. J.
, and
Mathis
,
N. E.
, 2001, “
Orientation Specific Thermal Properties of Polyimide Film
,”
ASME J. Electron. Packag.
1043-7398,
123
(
3
), pp.
273
277
.
34.
Bigg
,
D. M.
, 1986, “
Thermally Conductive Polymer Compositions
,”
Polym. Compos.
0272-8397,
7
(
3
), pp.
125
140
.
You do not currently have access to this content.