A three-dimensional numerical model is developed to simulate the mold filling behavior in the plastic encapsulation of microchips. The conventional Hele–Shaw approximation is inadequate to analyze a complex molding compound flow behavior with multiple microchips in a single cavity. The developed numerical algorithm is based on the finite difference method combined with the robustness of volume of fluid volume-tracking method to solve the two-phase flow field in complex mold and die geometries. Twelve dies are arranged in a matrix-array in a single mold cavity. Short-shot experimental data are used to validate the numerical results for the melt flow front at different flow times. Close agreement between the experimental data and the numerical results demonstrates the applicability of the present computational model for the simulation of practical epoxy molding compound encapsulation.

1.
Manzione
,
L. T.
, 1990,
Plastic Packaging of Microelectronic Devices
,
Van Nostrand
,
New York
.
2.
Yang
,
H. Q.
,
Bayyuk
,
S.
,
Mazumder
,
S.
,
Lowry
,
S.
,
Krishnan
,
A.
,
Przekwas
,
A.
, and
Nguyen
,
L.
, 2001, “
Time-Accurate, 3-D Computation of Wire Sweep During Plastic Encapsulation of Electronic Components
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
501
509
.
3.
Han
,
R.
,
Shi
,
L.
, and
Gupta
,
M.
, 2000, “
Three-Dimensional Simulation of Microchip Encapsulation Process
,”
Polym. Eng. Sci.
0032-3888,
40
(
3
), pp.
776
785
.
4.
Zhou
,
H.
,
Geng
,
T.
, and
Li
,
D.
, 2005, “
Numerical Filling Simulation of Injection Molding Based on 3-D Finite Element Model
,”
J. Reinf. Plast. Compos.
0731-6844,
24
(
8
), pp.
823
830
.
5.
Hieber
,
C. A.
, and
Shen
,
S. F.
, 1980, “
A Finite-Element/Finite-Difference Simulation of the Injection-Molding
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
7
(
1
), pp.
1
32
.
6.
Liang
,
C. W.
,
Kulkarni
,
V. M.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
, 2005, “
Parametric Studies in Transfer Molding for Newtonian Fluids
,”
Journal of Physical Science
,
16
(
2
), pp.
103
114
.
7.
Han
,
S.
, and
Wang
,
K. K.
, 2000, “
Integrated Flow Analysis During Filling and Post-filling Stage of Semiconductor Encapsulation
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
20
27
.
8.
Han
,
S.
, and
Wang
,
K. K.
, 2000, “
Flow Analysis in a Chip Cavity During Semiconductor Encapsulation
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
160
167
.
9.
Nguyen
,
L.
,
Quentin
,
C. G.
, and
Lee
,
W. W.
, 1999, “
Flow Modeling and Visualization of the Transfer Molding of Plastic Ball Grid Array Packages
,”
Electronic Components and Technology Conference
, Santa Clara, pp.
177
184
.
10.
Shen
,
Y. K.
,
Ye
,
T. W.
,
Chen
,
S. L.
,
Yin
,
C. H.
, and
Song
,
W. D.
, 2001, “
Study of Mold Flow Analysis of Flip Chip Package
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
7
), pp.
943
952
.
11.
Chai
,
K.
,
Liu
,
V.
,
Wang
,
Y. P.
, and
Her
,
T. D.
, 2000, “
The Application of Mold Flow Simulation in Electronic Package
,”
IEEE International Symposium on Electronic Material and Packaging
, Hong Kong, pp.
330
334
.
12.
Kulkarni
,
V. M.
,
Seetharamu
,
K. N.
,
Azid
,
A. I.
,
Narayana
,
P. A. A.
, and
Quadir
,
A. G.
, 2006, “
Numerical Simulation of Underfill Encapsulation Process Based on Characteristic Split Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
, pp.
1658
1671
.
13.
Han
,
R.
, and
Gupta
,
M.
, 2002, “
Three-Dimensional Simulation of Reactive Polymeric Flow During Microchip Encapsulation
,”
J. Injection Molding Technol.
1533-905X,
6
(
3
), pp.
203
219
.
14.
Haagh
,
G. A. A. V.
, and
De Vosse
,
F. N. V.
, 1998, “
Simulation of three-Dimensional Polymer Mould Filling Processes Using a Pseudo-Concentration Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
1355
1369
.
15.
Chang
,
R. Y.
, and
Yang
,
W. H.
, 2001, “
Numerical Simulation of Mold Filling in Injection Molding Using a Three-Dimensional Finite Volume Approach
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
, pp.
125
148
.
16.
Carreau
,
P. J.
,
De Kee
,
D. C. R.
, and
Chabra
,
R. P.
, 1997,
Rheology of Polymeric Systems, Principles and Applications
,
Henser/Gardner
,
Cincinnati
.
17.
Pozrikidis
,
C.
, 1996,
Introduction to Theoretical and Computational Fluid Dynamics
,
Oxford University Press
,
New York
.
18.
Kawamura
,
T.
, and
Kuwahara
,
K.
, 1984, “
Computation of High Reynolds Number Flow Around a Circular Cylinder With Surface Roughness
,”
AIAA 22nd Aerospace Science Meeting
, Nevada, pp.
1
11
.
19.
Pei
,
C. C.
, and
Hwang
,
S. J.
, 2005, “
Three-Dimensional Paddle Shift Modelling for I.C. Packaging
,”
ASME J. Electron. Packag.
1043-7398,
127
, pp.
324
334
.
20.
Abdullah
,
M. K.
,
Abdullah
,
M. Z.
,
Mujeebu
,
M. A.
,
Kamaruddin
,
S.
, and
Ariff
,
Z. M.
, 2008, “
Study on the Effect of Stack Thickness During Encapsulation of Stacked-Chip Scale Packages (S-CSPs)
,”
Journal of Microelectronics and Electronic Packaging
,
5
, pp.
62
67
.
21.
Halley
,
P. J.
, and
George
,
G. A.
, 2009,
Chemorheology of Polymers: From Fundamental Principles to Reactive Processing
,
Cambridge University Press
,
New York
.
22.
Kulkarni
,
V. M.
, 2006, “
Computational Fluid Flow Analysis of Mold Filling Process in Electronic Packaging
,” Ph.D. thesis, Universiti Sains Malaysia, Malaysia.
You do not currently have access to this content.