Reliable and efficient cooling solutions for portable electronic devices are now at the forefront of research due to consumer demand for manufacturers to downscale existing technologies. To achieve this, the power consumed has to be dissipated over smaller areas resulting in elevated heat fluxes. With regard to cooling such devices, the most popular choice is to integrate a fan driven heat sink, which for portable electronic devices must have a low profile. This paper presents an experimental investigation into such low profile cooling solutions, which incorporate one of the smallest commercially available fans in series with two different heat sink designs. The first of these is the conventionally used finned heat sink design, which was specifically optimized and custom manufactured in the current study to complement the driving fan. While the second design proposed is a novel “finless” type heat sink suitable for use in low profile applications. Together the driving fan and heat sinks combined were constrained to have a total footprint area of 465mm2 and a profile height of only 5 mm, making them ideal for use in portable electronics. The objective was to evaluate the performance of the proposed finless heat sink design against a conventional finned heat sink, and this was achieved by means of thermal resistance and overall heat transfer coefficient measurements. It was found that the proposed finless design proved to be the superior cooling solution when operating at low fan speeds, while at the maximum fan speed tested of 8000 rpm both provided similar performance. Particle image velocimetry measurements were used to detail the flow structures within each heat sink and highlighted methods, which could further optimize their performance. Also, these measurements along with corresponding global volume flow rate measurements were used to elucidate the enhanced heat transfer characteristics observed for the finless design. Overall, it is shown that the proposed finless type heat sink can provide superior performance compared with conventional finned designs when used in low profile applications. In addition a number of secondary benefits associated with such a design are highlighted including lower cost, lower mass, lower acoustics, and reduced fouling issues.

1.
Luo
,
Z. X.
,
Cho
,
H. J.
,
Luo
,
X. B.
, and
Cho
,
K. I.
, 2008, “
System Thermal Analysis for Mobile Phone
,”
Appl. Therm. Eng.
1359-4311,
28
(
14–15
), pp.
1889
1895
.
2.
Hasheme
,
H.
, and
Langari
,
A.
, 2008, “
A System Level Cooling Solution for Cellular Phone Applications
,”
Electronics Cooling Magazine
,
6
(
2
).
3.
Lee
,
T. T.
,
Chamber
,
B.
, and
Ramakrishna
K.
, 1998, “
Thermal Management of Handheld Telecommunication Products
,”
Electronics Cooling Magazine
,
4
(
2
).
4.
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
, 2004, “
Experimental Study on Silicon Micro-Heat Pipe Arrays
,”
Appl. Therm. Eng.
1359-4311,
24
(
2–3
), pp.
233
243
.
5.
Kim
,
K. S.
,
Won
,
M. H.
,
Kim
,
J. W.
, and
Back
,
B. J.
, 2003, “
Heat Pipe Cooling Technology for Desktop PCCPU
,”
Appl. Therm. Eng.
1359-4311,
23
(
9
), pp.
1137
1144
.
6.
Zhao
,
Z.
, and
Avedisian
,
C. T.
, 1997, “
Enhancing Forced Air Convection Heat Transfer From an Array of Parallel Plate Fins Using a Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
13
), pp.
3135
3147
.
7.
Vasiliev
,
L. L.
, 2008, “
Micro and Miniature Heat Pipes—Electronic Component Coolers
,”
Appl. Therm. Eng.
1359-4311,
28
(
4
), pp.
266
273
.
8.
Tan
,
F. L.
, and
Tso
,
C. P.
, 2004, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
1359-4311,
24
(
2–3
), pp.
159
169
.
9.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
, 2008, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
1290-0729,
47
(
8
), pp.
1055
1068
.
10.
Kandasamy
,
R.
,
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
, 2008, “
Transient cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
1359-4311,
28
(
8–9
), pp.
1047
1057
.
11.
Vogel
,
M. R.
, 1995, “
Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
(
1
), pp.
68
73
.
12.
Incropera
,
F. P.
, 1999,
Liquid Cooling of Electronic Devices by Single Phase Convection
,
Wiley
,
New York
.
13.
Walsh
,
E.
, and
Grimes
,
R.
, 2007, “
Low Profile Fan and Heat Sink Thermal Management Solution for Portable Applications
,”
Int. J. Therm. Sci.
1290-0729,
46
(
11
), pp.
1182
1190
.
14.
Walsh
,
E. J.
,
Grimes
,
R.
, and
Punch
,
J.
, 2007, “
A Cooling Device
,” Patent No. WO2007057871.
15.
Walsh
,
E.
,
Walsh
,
P.
,
Grimes
,
P.
, and
Egan
,
V.
, 2008, “
Thermal Management of Low Profile Electronic Equipment Using Radial Fans and Heat Sinks
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
125001
.
16.
Walsh
,
E. J.
, 2006, “
Low Profile Thermal Management
,”
EPEC Seminar on High Temperature Electronics and Thermal Management
, Nuremburg, Germany.
17.
Walsh
,
P.
,
Egan
,
V.
,
Grimes
,
R.
, and
Walsh
,
E.
, 2009, “
Profile Scaling of Miniature Centrifugal Fans
,”
Heat Transfer Eng.
0145-7632,
30
(
1–2
), pp.
130
137
.
18.
Grimes
,
R.
,
Walsh
,
P.
,
Walsh
,
E.
, and
Egan
,
V.
, 2007, “
The Effects of Diameter and Rotational Speed on the Aerodynamic Performance of Low Profile Miniature Radial Flow Fans
,”
Proceedings of the Fifth ASME International Conference on Nanochemicals, Microchannels and Minichannels
, Puebla, Mexico, Paper No. ICNMM2007-30185.
19.
Grimes
,
R.
,
Walsh
,
E. J.
,
Quin
,
D.
, and
Davies
,
M.
, 2005, “
The Effect of Geometric Scaling on Aerodynamic Performance
,”
AIAA J.
0001-1452,
43
(
11
), pp.
2293
2298
.
20.
Egan
,
V.
,
Stafford
,
J.
,
Walsh
,
P. A.
, and
Walsh
,
E. J.
, 2009“
An Experimental Study on the Performance of Miniature Heat Sinks for Forced Convection Air Cooling
,”
ASME J. Heat Transfer
0022-1481,
131
(
7
), p.
071402
.
21.
Walsh
,
E. J.
,
Walsh
,
P. A.
,
Punch
,
J.
, and
Grimes
,
R.
, “
Acoustic Emissions From Active Cooling Solutions for Portable Devices
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331, revision sumitted.
22.
Day
,
S. W.
,
Lemire
,
P. P.
,
Flack
,
R. D.
, and
McDaniel
,
J. C.
, 2003, “
Effect of Reynolds Number on Performance of a Small Centrifugal Pump
,”
Proceedings of the Fourth ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45686.
23.
Kim
,
T. Y.
,
Kim
,
D. K.
, and
Kim
,
S. J.
, 2008, “
Scroll Heat Sink. A Novel Heat Sink With the Moving Fins Inserted Between the Cooling Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3267
3274
.
24.
Acikalin
,
T.
,
Garimella
,
S. V.
,
Raman
,
A.
, and
Petrosk
,
J.
, 2007, “
Characterization and Optimization of the Thermal Performance of Miniature Piezoelectric Fans
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
4
), pp.
806
820
.
25.
Maveety
,
J. G.
, and
Jung
,
H. H.
, 2002, “
Heat Transfer From Square Pin-Fin Heat Sinks Using Air Impingement Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
459
469
.
26.
Maveety
,
J. G.
, and
Jung
,
H. H.
, 2000, “
Design of an Optimal Pin-Fin Heat Sink With Air Impingement Cooling
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
2
), pp.
229
240
.
27.
Yang
,
Y. -T.
, 2008, “
Numerical Study of Pin-Fin Heat Sink With Un-Uniform Fin Height Design
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
19–20
), pp.
4788
4796
.
28.
Maveety
,
J. G.
, and
Hendricks
,
J. F.
, 1999, “
A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement, and Reynolds Number With Air Impingement
,”
ASME J. Electron. Packag.
1043-7398,
121
(
3
), pp.
156
161
.
29.
Li
,
H. Y.
, and
Chen
,
K. Y.
, 2007, “
Thermal Performance of Plate-Fin Heat Sinks Under Confined Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
9–10
), pp.
1963
1970
.
30.
Chien
,
H.
, 2001, “
The Study of Micro-Fin Heat Sinks for Electronic Cooling Applications
,”
17th IEEE SEMI-THERM Symposium
.
31.
Yang
,
K. S.
,
Chiang
,
C. M.
,
Lin
,
Y. T.
,
Chien
,
K. H.
, and
Wang
,
C. C.
, 2007, “
On the Heat Transfer Characteristics of Heat Sinks: Influence of Fin Spacing at Low Reynolds Number Region
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
13–14
), pp.
2667
2674
.
32.
Bejan
,
A.
, and
Sciubba
,
E.
, 1992, “
The Optimal Spacing of Parallel Plates Cooled by Forced-Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
12
), pp.
3259
3264
.
33.
Lin
,
W. W.
, and
Lee
,
D. J.
, 2000, “
Second-Law Analysis on a Flat Plate-Fin Array Under Crossflow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
2
), pp.
179
190
.
34.
Micronel
, 2008, “
Technical Data Sheet for Fans F16LM/U16LM-9
,” Micronel AG, CH-8307 Tagelswangen, web source: www.micronel.chwww.micronel.ch (accessed Sept. 1).
35.
Bleier
,
F. P.
, 1997,
Fan Handbook: Selection, Application and Design
,
McGraw-Hill
,
New York
.
36.
Prandtl
,
L.
, 1904, “
Uber Flussigkeitsbewegung bei sehr kleiner Reibung
,”
Proceedings of the Third International Mathematics Congress
, Heidelberg, Germany.
37.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
38.
Ellison
,
G. N.
, 1989,
Thermal Computations for Electronic Equipment
,
Krieger
,
Malabar, FL
.
39.
Moffat
,
J. R.
, 1999, “
Uncertainty Analysis
,”
Electronics Cooling Magazine
,
5
(
2
).
40.
Raffel
,
M.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
You do not currently have access to this content.