Piezoresistive sensors have been demonstrated to be an accurate and efficient tool for stress measurements on chip surfaces inside microelectronic packaging. In this work, test chips with piezoresistive stress sensors, diode temperature sensors as well as heaters were first designed, fabricated, and calibrated. We next packaged the test chips into low profile, fine pitch ball grid array (LFBGA) packaging with 196 balls and measured the stresses on chip surfaces inside the packaging. After measuring the packaging induced stress as well as the stress under stable environmental temperature rises, it was found that compressive stresses were obtained at room temperature, and the stresses were relaxed as temperature went up at a rate between 0.45MPa/°C and 0.60MPa/°C. For thermo-stress experiments, the temperatures on chip surfaces at different power levels were measured, and compressive chip stresses were first extracted. As the chip power increased, the compressive stresses became tensions. Since the LFBGA structure is thinner with higher packaging efficiency, different results from our earlier plastic quad flat package stress measurements were observed and discussed. In addition, the final comparisons between the experimental data and the finite element simulations show good consistency.

1.
Tummala
,
R. R.
,
Rymaszewski
,
E. J.
, and
Klopfenstein
,
A. G.
, 1997,
Microelectronics Packaging Handbook
, 2nd ed.,
Chapman and Hall
,
New York
.
2.
Lau
,
J.
,
Wong
,
C. P.
,
Prince
,
J. L.
, and
Nakayama
,
W.
, 1998,
Electronic Packaging—Design, Materials, Process, and Reliability
,
McGraw-Hill
,
New York
.
3.
Mian
,
A.
,
Suhling
,
J. C.
, and
Jaeger
,
R. C.
, 2006, “
The van der Pauw Stress Sensor
,”
IEEE Sens. J.
1530-437X,
6
(
2
), pp.
340
356
.
4.
Xu
,
J.
,
Zhao
,
Y.
, and
Jiang
,
Z.
, 2007, “
Analysis of the Packaging Stresses in Monolithic Multi-Sensor
,”
Proceedings of the Second IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, pp.
241
244
.
5.
Slattery
,
O.
,
O’Mahoney
,
D.
,
Sheehan
,
E.
, and
Waldron
,
F.
, 2004, “
Sources of Variation in Piezoresistive Stress Sensor Measurements
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
1
), pp.
81
86
.
6.
Zou
,
Y.
,
Suhling
,
J. C.
,
Johnson
,
R. W.
,
Jaeger
,
R. C.
, and
Mian
,
A. K. N.
, 1999, “
In-Situ Stress State Measurements During Chip-on-Board Assembly
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
22
, pp.
38
52
.
7.
Palaniappan
,
P.
,
Baldwin
,
D. F.
,
Selman
,
P. J.
,
Wu
,
J.
, and
Wong
,
C. P.
, 1999, “
Correlation of Flip Chip Underfill Process Parameters and Material Properties With In-Process Stress Generation
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
22
, pp.
53
62
.
8.
Hau
,
W. L. W.
,
Yuen
,
M. M. F.
,
Yan
,
Z.
, and
Chan
,
P. C. H.
, 2000, “
A New Stress Chip Design for Electronic Packaging Applications
,”
Proceedings on the 2000 International Symposium on Electronic Materials and Packaging
, pp.
457
463
.
9.
Lwo
,
B. J.
,
Kao
,
C. H.
,
Chen
,
T. S.
, and
Chen
,
Y. S.
, 2002, “
On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging
,”
ASME J. Electron. Packag.
1043-7398,
124
(
1
), pp.
22
26
.
10.
Lwo
,
B. J.
,
Chen
,
T. S.
,
Kao
,
C. H.
, and
Lin
,
Y. L.
, 2002, “
In-Plane Packaging Stress Measurements Through Piezoresistive Sensors
,”
ASME J. Electron. Packag.
1043-7398,
124
(
2
), pp.
115
121
.
11.
Rahim
,
M. K.
,
Suhling
,
J. C.
,
Copeland
,
D. S.
,
Islam
,
M. S.
,
Jaeger
,
R. C.
, and
Johnson
,
R. W.
, 2005, “
Die Stress Characterization in Flip Chip on Laminate Assemblies
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
3
), pp.
415
429
.
12.
Bahreyni
,
B.
,
Najafi
,
F.
, and
Shafai
,
C.
, 2006, “
Piezoresistive Sensing With Twin-Beam Structures in Standard MEMS Foundry Processes
,”
Sens. Actuators, A
0924-4247,
127
(
2
), pp.
325
331
.
13.
Bahreyni
,
B.
, and
Shafai
,
C.
, 2005,
Fabrication of Piezoresistive Sensors in Standard MEMS Foundry Processes
,
IEEE
,
New York
, pp.
215
218
.
14.
Okojie
,
R. S.
,
Atwell
,
A. R.
,
Kornegay
,
K. T.
,
Roberson
,
S. L.
, and
Beliveau
,
A.
, 2002, “
Design Considerations for Bulk Micromachined 6H-SIC High-G Piezoresistive Accelerometers
,”
Proceedings for the 15th IEEE International Conference on Micro Electro Mechanical Systems
, pp.
618
622
.
15.
Hsieh
,
M. C.
,
Fang
,
Y. K.
,
Ju
,
M. S.
,
Chen
,
G. S.
,
Ho
,
J. J.
,
Yang
,
C. H.
,
Wu
,
P. M.
,
Wu
,
G. S.
, and
Chen
,
T. Y. F.
, 2001, “
A Contact-Type Piezoresistive Micor-Shear Stress Sensor for Above-Knee Prosthesis Application
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
121
127
.
16.
Singh
,
R.
,
Ngo
,
L. L.
,
Seng
,
H. S.
, and
Mok
,
F. N. C.
, 2002, “
A Silicon Piezoresistive Pressure Sensor
,”
Proceedings of the First IEEE International Workshop on Electronic Design, Test, and Applications
, pp.
1
4
.
17.
Lwo
,
B. J.
, and
Wu
,
S. -Y.
, 2003, “
Calibrate Piezoresistive Stress Sensors Through the Assembled Structure
,”
ASME J. Electron. Packag.
1043-7398,
125
(
2
), pp.
289
293
.
19.
Lau
,
J. H.
, 1993,
Thermal Stress and Strain in Microelectronics Packaging
,
Van Nostrand Reinhold
,
New York
.
20.
Jaeger
,
R. C.
,
Suhling
,
J. C.
,
Carey
,
M. T.
, and
Johnson
,
R. W.
, 1993, “
Off-Axis Sensor Rosette for Measurement of the Piezoresistive Coefficients of Silicon
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
16
(
8
), pp.
925
930
.
21.
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
Anderson
,
A. A.
, 2004, “
A (100) Silicon Stress Test Chip With Optimized Piezoresistive Sensor Rosettes
,”
Proceedings of the 1994 Electronic Components and Technology Conference
, pp.
741
749
.
22.
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
Ramani
,
R.
, 1994, “
Errors Associated With the Design, Calibration and Application of Piezoresistive Stress Sensors in (100) Silicon
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
17
(
1
), pp.
97
107
.
23.
ANSYS User’s Manual, Revision 5.2 and 6.0
,” ANSYS Inc., Canonsburg, PA.
24.
Lau
,
J. H.
, 2000,
Low Cost Flip Chip Technologies
,
McGraw-Hill
,
New York
, pp.
435
and
533
.
25.
Tiersten
,
H. F.
,
Sham
,
T.-L.
,
Lwo
,
B. J.
,
Zhou
,
Y. S.
,
Song
,
L. Y.
,
Baehmann
,
P. L.
,
Le Coz
,
Y. L.
, and
Shephard
,
M. S.
, 1993, “
A Global-Local Procedure for the Thermoelastic Analysis of Multichip Modules
,” Advances in Electronic Packaging, EEP, Vol. 4–1, ASME, pp.
103
118
.
26.
Sham
,
T. -L.
,
Tiersten
,
H. F.
,
Baehmann
,
P. L.
,
Song
,
L. Y.
,
Zhou
,
Y. S.
,
Lwo
,
B. J.
,
Le Coz
,
Y. L.
, and
Shephard
,
M. S.
, 1993, “
A Global-Local Procedure for the Heat Conduction Analysis of Multichip Modules
,” Advances in Electronic Packaging, EEP, Vol. 4–2, ASME, pp.
551
562
.
27.
Tsai
,
M. Y.
,
Chen
,
C. H.
, and
Lin
,
C. S.
, 2006, “
Test Methods for Silicon Die Strength
,”
ASME J. Electron. Packag.
1043-7398,
128
(
4
), pp.
419
426
.
28.
Lwo
,
B. J.
, and
Kao
,
C. H.
, 2001, “
Fast Thermal Resistance on New PBGA Packaging Designs
,”
J. of Chung-Cheng Institute of Technology
,
29
(
2
), pp.
119
126
.
You do not currently have access to this content.