In this study, a computational fluid dynamics model has been developed to explain and validate the experimental results originating from the concept of a substrate with an opening. It is found that the openings will interrupt the growth of the boundary layer on substrate surfaces and hence improve the cooling ability of a module without any additional active parts. Furthermore, the concept of openings has not only so far provided at least 12% improvement in heat transfer, but also reduced some difficulties in finding thermal solution, such as the manufacturing cost and the design freedom. More importantly, this study has provided a further step in the direction of demonstrating the opening effect.
Issue Section:
Research Papers
1.
Bar-Cohen
, A.
, Kraus
, A. D.
, and Davidson
, S. F.
, 1983, “Thermal Frontiers in the Design and Packaging of Microelectronic Equipment
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 105
(6
), pp. 53
–59
.2.
Yeh
, L. T.
, 1995, “Review of Heat Transfer Technologies in Electronic Equipment
,” ASME J. Electron. Packag.
1043-7398, 117
, pp. 333
–339
.3.
Sparrow
, E. M.
, Yanezmoreno
, A. A.
, and Otis
, D. R.
, 1984, “Convective Heat Transfer Response to Height Differences in an Array of Block-Like Electronic Components
,” Int. J. Heat Mass Transfer
0017-9310, 27
, pp. 469
–473
.4.
Sparrow
, E. M.
, Verumi
, S. B.
, and Kadle
, D. S.
, 1983, “Enhanced and Local Heat Transfer, Pressure Drop, and Flow Visualization for Arrays of Block-Like Electronic Components
,” Int. J. Heat Mass Transfer
0017-9310, 27
, pp. 689
–699
.5.
Peterson
, G. P.
, and Ortega
, A.
, 1990, “Thermal Control of Electronic Equipment and Devices
,” Adv. Heat Transfer
0065-2717, 20
, pp. 181
–314
.6.
Hung
, T. C.
, Wang
, S. K.
, and Tsai
, F. P.
, 1997, “Simulations of Passively Enhanced Conjugate Heat Transfer across an Array of Volumetric Heat Sources
,” Commun. Numer. Methods Eng.
1069-8299, 13
, pp. 855
–866
.7.
Hung
, T. C.
, and Fu
, C. S.
, 1999, “Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling Through Geometric Modification in a Mixed Convection Domain
,” Numer. Heat Transfer, Part A
1040-7782, 35
, pp. 519
–535
.8.
Hung
, T. C.
, 2001, “A Conceptual Design of Thermal Modeling for Efficiently Cooling an Array of Heated Devices Under Low Reynolds Numbers
,” Numer. Heat Transfer, Part A
1040-7782, 39
, pp. 361
–382
.9.
Aghazadeh
, M.
, and Mallik
, D.
, 1990, “Thermal Characteristic of Single and Multilayer High Performance PQFP Packages
,” IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411, 20
(2
), pp. 975
–979
.10.
Ridsdle
, G.
, Joiner
, B.
, Bigler
, J.
, and Torres
, V. M.
, 1994, “Thermal Performance Limits of the QFP Family
,” IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411, 17
(4
), pp. 427
–443
.11.
Edwards
, D. R.
, Hwang
, M.
, and Stearns
, B.
, 1995, “Thermal Enhancement of Plastic IC packages
,” IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411, 18
(1
), pp. 57
–67
.12.
Tseng
, Y. S.
, Hung
, T. C.
, and Pei
, B. S.
, 2007, “The Effects of Thermal Radiation for Electronic Cooling on Modified PCB Geometry Under Natural Convection
,” Numer. Heat Transfer, Part A
1040-7782, 51
, pp. 195
–210
.13.
EIA/JEDEC Standard, 1995, “
Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air)
,” Report No. TIS/JESD51-2.14.
Incropera
, F. P.
, and DeWitt
, D. P.
, 1996, Fundamentals of Heat and Mass Transfer
, 4th ed., Wiley
, New York
, Chap. 13, pp. 719
and 733
.15.
Chui
, E. H.
, and Raithby
, G. D.
, 1993, “Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method
,” Numer. Heat Transfer, Part B
1040-7790, 23
, pp. 269
–288
.16.
Chai
, J. C.
, Lee
, H. S.
, and Patanker
, S. V.
, 1995, “Finite Volume Radiative Heat Transfer Procedure for Irregular Geometries
,” J. Thermophys. Heat Transfer
0887-8722, 9
(3
), pp. 410
–415
.17.
Kim
, M. Y.
, and Baek
, S. W.
, 1996, “Numerical Analysis of Conduction, Convection, and Radiation in a Gradually Expanding Channel
,” Numer. Heat Transfer, Part A
1040-7782, 29
(7
), pp. 725
–740
.18.
Baek
, S. W.
, and Kim
, M. Y.
, 1998, “Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure
,” Numer. Heat Transfer, Part B
1040-7790, 34
(4
), pp. 419
–437
.19.
Liu
, J. S.
, Shang
, H. M.
, Chen
, Y. S.
, and Wang
, T. S.
, 1997, “Prediction of Radiative Transfer in General Body-Fitted Coordinates
,” Numer. Heat Transfer, Part B
1040-7790, 31
, pp. 423
–439
.20.
Vandoormaal
, J. P.
, and Raithby
, G. D.
, 1984, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,” Numer. Heat Transfer
0149-5720, 7
, pp. 147
–163
.21.
Raithby
, G. D.
, and Chui
, E. H.
, 1990, “A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,” ASME J. Eng. Gas Turbines Power
0742-4795, 112
, pp. 415
–423
.22.
Murthy
, J. Y.
, and Mathur
, S. R.
, 1998, “A Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,” Paper No. AIAA-98-0860.23.
Hottel
, H. C.
, 1930, “Radiant Heat Transmissions
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 52
, pp. 699
–704
.24.
Goldstein
, R. J.
, Sparrow
, E. M.
, and Jones
, D. C.
, 1973, “Natural Convection Adjacent to Horizontal Plates
,” Int. J. Heat Mass Transfer
0017-9310, 16
, pp. 1025
–1034
.25.
Lloyd
, J. R.
, and Moran
, W. R.
, 1974, “Natural Convection Adjacent to Horizontal Surface of Various Plan forms
,” ASME Paper No. WA/HT-66.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.