Pyroelectric film materials, including polyvinylidene fluoride (PVDF) and its copolymers (e.g., P(VDF/trifluoroethylene)), are attractive candidates for low-cost infrared detection and imaging applications due to their compatibility with complementary metal-oxide semiconductor processing and inexpensive packaging requirements compared to semiconductor-based detectors. The pyroelectric coefficient (p) describes the material’s electric response to a change in sensor temperature and is the main contributor to the sensitivity and detectivity of the system. However, this value can vary greatly with film fabrication and poling processes, and its measurement is often highly coupled to the material’s thermal diffusivity. This paper describes a new approach to film characterization that combines the popular “3-omega” technique for thermal characterization with a modified version of the laser intensity modulation method for determining the film’s pyroelectric coefficient. The new method is capable of simultaneously measuring film conductivity, diffusivity, and pyroelectric coefficient. It could increase the accuracy of the pyroelectric measurements by providing in situ thermal data to the electrical model instead of relying on published values or thermal measurements of a different sample. We also present a fabrication process that can be used to pole and measure a variety of pyroelectric materials and a mathematical framework to study the thermal phenomena of the setup. The thermal model is used to highlight the methodology’s sensitivity to uncertainties in the geometric and material property values of the layers surrounding the pyroelectric film.

1.
Frost & Sullivan
, 2001, “
North American Infrared Sensors Market
.”
2.
Smith
,
B.
, and
Amon
,
C.
, 2003, “
Design of a Low-Cost Infrared Sensor Array Through Thermal System Modeling
,” presented at the
Proceedings of IPACK03: International Electronic Packaging Technical Conference and Expo
,
Maui, HI
.
3.
Evans
,
T.
,
Sun
,
S.
,
Ruffner
,
J.
, and
Clem
,
P.
, 2000, “
Aerogel Isloated Pyroelectric IR Detector
,”
Proceedings of ISAF: The International Symposium on the Applications of Ferroelectrics
, pp.
221
226
.
4.
Smith
,
B.
, and
Amon
,
C.
, 2003, “
Effect of Sub-Continuum Energy Transport on Effective Thermal Conductivity in Nanoporous Silica (Aerogel)
,” presented at the
Proceedings of IMECE’03: 2003 ASME International Mechanical Engineering Conference and R&D Expo
,
Washington, DC
.
5.
Ploss
,
B.
, and
Bauer
,
S.
, 1991, “
Characterization of Materials for Integrated Pyroelectric Sensors
,”
Sens. Actuators, A
0924-4247,
25–27
, pp.
407
411
.
6.
Setiadi
,
D.
,
Regtien
,
P.
, and
Sarro
,
P.
, 1995, “
Realization of an Integrated VDF/TrFE Copolymer-on-Silicon Pyroelectric Sensor
,”
Microelectron. Eng.
0167-9317,
29
, pp.
85
88
.
7.
Neumann
,
N.
, and
Koehler
,
R.
, 1993, “
Application of Pyroelectric P(VDF/TrFE) Thin Films in Integrated Sensors and Arrays
,”
Proc. SPIE
0277-786X,
2021
, pp.
35
44
.
8.
Jerominek
,
H.
,
Pope
,
T.
,
Alain
,
C.
, and
Zhang
,
R.
, 1998, “
128×128Pixel Uncooled Bolometric FPA for IR Detection and Imaging
,”
Proc. SPIE
0277-786X,
3436
, pp.
585
592
.
9.
Kulwicki
,
B.
,
Amin
,
A.
,
Beratan
,
H.
, and
Hanson
,
C.
, 1992, “
Pyroelectric Imaging
,” presented at the
Proceedings of the Eighth International Symposium on Applications of Ferroelectrics
,
Greenville, SC
.
10.
Whatmore
,
R.
, 1986, “
Pyroelectric Devices and Materials
,”
Rep. Prog. Phys.
0034-4885,
49
(
12
), pp.
1335
1386
.
11.
Whatmore
,
R.
, and
Watton
,
R.
, 2001,
Pyroelectric Materials and Devices: Infrared Detectors and Emmitters: Materials and Devices
, 1st ed.,
Kluwer Academic
,
Boston, MA
.
12.
Glass
,
A.
, 1969, “
Investigation of the Electrical Properties of Sr1−xBaxNb2O6 With Special Reference to Pyroelectric Detection
,”
J. Appl. Phys.
0021-8979,
40
, pp.
4699
4713
.
13.
Garn
,
L.
, and
Sharp
,
E.
, 1982, “
Use of Low-Frequency Sinusoidal Temperature Waves to Separate Pyroelectric Currents From Nonpyroelectric Currents. Part II. Experiment
,”
J. Appl. Phys.
0021-8979,
53
, pp.
8980
8987
.
14.
Dias
,
C.
,
Simon
,
M.
,
Quad
,
R.
, and
Das-Gupta
,
D.
, 1993, “
Measurement of the Pyroelectric Coefficient in Composites Using a Temperature-Modulated Excitation
,”
J. Phys. D
0022-3727,
26
, pp.
106
110
.
15.
Ploss
,
B.
, and
Domig
,
A.
, 1994, “
Static and Dynamic Properties of PVDF
,”
Ferroelectrics
0015-0193,
159
, pp.
263
268
.
16.
Lang
,
S.
, 1989, “
Technique for the Measurement of Thermal Diffusivity Based on the Laser Intensity Modulation Method (LIMM)
,”
Ferroelectrics
0015-0193,
93
, pp.
87
93
.
17.
Flik
,
M.
,
Choi
,
B. I.
, and
Goodson
,
K.
, 1992, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
666
674
.
18.
Lang
,
S.
, 2004, “
Laser Intensity Modulation Method (LIMM): Review of Fundamentals and a New Method for Data Analysis
,”
IEEE Trans. Dielectr. Electr. Insul.
1070-9878,
11
(
1
), pp.
3
12
.
19.
Pollock
,
H.
, and
Hammiche
,
A.
, 2001, “
Microthermal Analysis: Techniques and Applications
,”
J. Phys. D
0022-3727,
34
, pp.
R23
R53
.
20.
Cahill
,
D.
, 1990, “
Thermal Conductivity Measurement From 30to750K: The 3-Omega Method
,”
Rev. Sci. Instrum.
0034-6748,
61
(
2
), pp.
802
808
.
21.
Kim
,
J.
,
Feldman
,
A.
, and
Novotny
,
D.
, 1999, “
Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness
,”
J. Appl. Phys.
0021-8979,
86
(
7
), pp.
3959
3963
.
22.
Jacquot
,
A.
,
Lenior
,
B.
,
Daucher
,
A.
,
Stozer
,
M.
, and
Meusel
,
J.
, 2002, “
Numerical Simulation of the 3-Omega Method for Measuring the Thermal Conductivity
,”
J. Appl. Phys.
0021-8979,
91
(
7
), pp.
4733
4738
.
23.
Incropera
,
F.
, and
DeWitt
,
D.
, 2001,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
Hoboken, NJ
.
24.
Lang
,
S.
, and
Das-Gupta
,
D.
, 1986, “
Laser-Intensity-Modulation Method: A Technique for Determination of Spatial Distributions of Polarization and Space Charge in Polymer Electrets
,”
J. Appl. Phys.
0021-8979,
59
(
6
), pp.
2151
2160
.
25.
Borca-Tasciuc
,
T.
,
Kumar
,
A.
, and
Chen
,
G.
, 2001, “
Data Reduction in 3-Omega Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
0034-6748,
72
(
4
), pp.
2139
2147
.
26.
Olson
,
B.
,
Graham
,
S.
, and
Chen
,
K.
, 2005, “
A Practical Extension of the 3-Omega Method to Multilayer Structures
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
053901
.
27.
Raudzis
,
C.
,
Schatz
,
F.
, and
Wharam
,
D.
, 2003, “
Extending the 3-Omega Method for Thin-Film Analysis to High Frequencies
,”
J. Appl. Phys.
0021-8979,
93
(
10
), pp.
6050
6055
.
28.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D.
, 2001, “
3-Omega Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
0034-6748,
72
(
7
), pp.
2996
3003
.
29.
Borca-Tasciuc
,
D.
, and
Chen
,
G.
, 2005, “
Anisotropic Thermal Properties of Nanochanneled Alumina Templates
,”
J. Appl. Phys.
0021-8979,
97
, p.
084303
.
30.
Tsui
,
B.
,
Yang
,
C.
, and
Fang
,
K.
, 2004, “
Anisotropic Thermal Conductivity of Nanoporous Silica Film
,”
IEEE Trans. Electron Devices
0018-9383,
51
(
1
), pp.
20
27
.
31.
DeFrutos
,
J.
, and
Jimenez
,
B.
, 1990, “
Study of the Spatial Distribution of the Polarization in Ferroelectric Ceramics by Means of Low Frequency Sinusoidal Thermal Waves
,”
Ferroelectrics
0015-0193,
109
, pp.
101
106
.
32.
Boue
,
C.
,
Alquie
,
C.
, and
Fournier
,
D.
, 1997, “
High Spatial Resolution of Permanent Polarization Distributions in Ferroelectric Samples Using a Combination of PWP and LIMM Measurements
,”
Ferroelectrics
0015-0193,
193
, pp.
175
188
.
33.
Bauer
,
S.
, and
Ploss
,
B.
, 1991, “
Polarization Distribution of Thermally Poled PVDF Films Measured With a Heat Wave Method (LIMM)
,”
Ferroelectrics
0015-0193,
118
, pp.
363
378
.
You do not currently have access to this content.