Time-dependent deformations such as creep and ratchetting of solder alloys are significant deformation phenomena that need to be understood to ensure the safety and reliability of solder joints in electronic packaging. There is much research on creep deformation of solder alloys, but ratchetting deformation, especially the correlation between creep and ratchetting deformation of solder alloys has not been investigated. This paper discusses the correlation between creep and uniaxial ratchetting deformation to establish the differences in the time-dependent deformation of lead-free and lead-containing solder alloys. Uniaxial ratchetting tests were conducted by cyclic tension–compression tests or cyclic tension–unloading tests at several ratios of the maximum to minimum stresses. Additional creep tests following the uniaxial ratchetting were also conducted to observe the effect of the uniaxial ratchetting on creep deformation. An empirical method to select an optimal lead-free solder alloy is discussed by defining a uniaxial ratchetting strain rate. The additional creep tests also show that the uniaxial ratchetting deformation has a strong correlation to the creep deformation and that the correlation is different for lead-free and lead-containing solder alloys.

1.
Ohguchi
,
K.
,
Sasaki
,
K.
,
Ishibashi
,
M.
, and
Hoshino
,
T.
, 2004, “
Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
371
379
.
2.
Lau
,
J. H.
,
Pan
,
S. H.
, and
Chang
,
C.
, 2002, “
Creep Analysis of Wafer Level Chip Scale Packaging (WLCSP) With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints and Microvia Build-Up Printed Circuit Board
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
69
76
.
3.
Vaynman
,
S.
, and
McKeown
,
S.-A.
, 1993, “
Energy-Based Methodology for Fatigue Life Prediction of Solder Materials
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
16
, pp.
317
322
.
4.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
, 1995, “
Energy Approach to the Fatigue of 60∕Sn Solder: Part I-Influence of Temperature and Cyclic Frequency
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
130
135
.
5.
Ishikawa
,
H.
,
Sasaki
,
K.
, and
Ohguchi
,
K.
, 1996, “
Prediction of Fatigue Failure of 60Sn-40Pb Solder Using Constitutive Model for Cyclic Viscoplasticity
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
164
169
.
6.
Shi
,
X Q.
.
,
Wang
,
Z. P.
,
Yang
,
Q. J.
, and
Pang
,
H. L. J.
, 2003, “
Creep Behavior and Deformation Mechanism Map of Sn‐Pb Eutectic Solder Alloy
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
81
88
.
7.
Whitelaw
,
R. S.
,
Neu
,
R. W.
, and
Scott
,
D. T.
, 1999, “
Deformation Behavior of Two Lead-Free Solders: Indalloy 227 and Castin Alloy
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
99
107
.
8.
Ren
,
W.
,
Qian
,
Z.
,
Lu
,
M.
, and
Liu
,
S.
, 1999, “
Investigation of a New Lead Free Solder Alloy Using Thin Strip Specimens
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
271
274
.
9.
Woodmansee
,
M. W.
, and
Neu
,
R. W.
, 2002, “
The Influence of Prior Strain Rate on Stress Relaxation in Solder Alloys
,”
Mater. Sci. Eng., A
0921-5093,
322
, pp.
79
88
.
10.
Bahay
,
M. M.
,
Mossalamy
,
M. E. EL.
,
Mahdy
,
M.
, and
Bahgat
,
A. A.
, 2004, “
Some Mechanical Properties of Sn‐3.5Ag Eutectic Alloy at Different Temperatures
,”
J. Mater. Sci.
0022-2461,
15
, pp.
519
526
.
11.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
, 2004, “
Creep Behavior of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder—Part I: As-Cast Condition
,”
J. Electron. Mater.
0361-5235,
33
, pp.
1389
1400
.
12.
Huang
,
M. L.
,
Wang
,
L.
, and
Wu
,
C. M. L.
, 2002, “
Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy
,”
J. Mater. Res.
0884-2914,
17
, pp.
2897
2903
.
13.
Chen
,
Z. G.
,
Shi
,
Y. W.
,
Xia
,
Z. D.
, and
Yan
,
Y. F.
, 2002, “
Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu‐RE and Its Soldered Joints
,”
J. Electron. Mater.
0361-5235,
31
, pp.
1122
1128
.
14.
Xiao
,
Q.
, and
Armstrong
,
W. D.
, 2005, “
Tensile Creep and Microstructural Characterization of Bulk Sn3.9Ag0.6Cu Lead-Free Solder
,”
J. Electron. Mater.
0361-5235,
34
, pp.
196
211
.
15.
Fu
,
C.-Y.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
, 1998, “
A Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
24
34
.
16.
Yang
,
X. J.
,
Chow
,
C. L.
, and
Lau
,
K. J.
, 2003, “
Time-Dependent Cyclic Deformation and Failure of 63Sn∕37Pb Solder Alloy
,”
Int. J. Fatigue
0142-1123,
25
, pp.
533
546
.
17.
Basaran
,
C.
,
Desai
,
C. S.
, and
Kundu
,
T.
, 1998, “
Thermomechanical Finite Element Analysis of Problems in Electronic Packaging Using the Disturbed State Concept: Part 1—Theory and Formulation
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
41
47
.
18.
Basaran
,
C.
,
Desai
,
C. S.
, and
Kundu
,
T.
, 1998, “
Thermomechanical Finite Element Analysis of Problems in Electronic Packaging Using the Disturbed State Concept: Part 2—Verification and Application
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
48
53
.
19.
Maciucescu
,
L.
,
Sham
,
T.-L.
, and
Krempl
,
E.
, 1999, “
Modeling the Deformation Behavior of a Sn‐Pb Solder Alloy Using the Simplified Viscoplasticity Theory Based on Overstress (VBO)
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
92
98
.
20.
Chandaroy
,
R.
, and
Basaran
,
C.
, 1999, “
Damage Mechanics of Surface Mount Technology Solder Joints Under Concurrent Thermal and Dynamic Loading
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
61
68
.
21.
Fu
,
C.-Y.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
, 2002, “
Thermoplastic Finite Element Analysis of Unfilled Plated-Through Holes During Wave Soldering
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
45
53
.
22.
McDowell
,
D. L.
, 1992, “
A Nonlinear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity
,”
Int. J. Plast.
0749-6419,
8
, pp.
695
728
.
23.
Wang
,
G. Z.
,
Cheng
,
Z. N.
,
Backer
,
K.
, and
Wild
,
J.
, 2001, “
Applying Anand Model to Represent the Viscoplastic Behavior of Solder Alloys
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
247
253
.
24.
Yi
,
S.
,
Luo
,
G.
, and
Chian
,
K. S.
, 2002, “
A Viscoplastic Constitutive Model for 63Sn37Pb Eutectic Solders
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
91
96
.
25.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2001, “
Description of Temperature Dependence and Creep Deformation of 60Sn-40Pb Solder Alloys
,”
JSME Int. J., Ser. A
1340-8046,
44
, pp.
82
88
.
26.
Sasaki
,
K.
,
Ohguchi
,
K.
, and
Ishikawa
,
H.
, 2001, “
Viscoplastic Deformation of 40Pb∕60Sn Solder Alloys—Experiments and Constitutive Modeling
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
379
387
.
27.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2003, “
Elastic-Plastic-Creep Simulation of Pb∕Sn Solder Alloys by Separation of Plastic and Creep
,”
JSME Int. J., Ser. A
1340-8046,
46
, pp.
559
566
.
28.
Sasaki
,
K.
,
Yanagimoto
,
A.
, and
Ishikawa
,
H.
, 2003, “
Viscoplastic Deformation of Lead Free Solder Alloy—Experiments and Simulations
,”
Key Eng. Mater.
1013-9826,
233–236
, pp.
779
784
.
29.
Ohguchi
,
K.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
, 2006, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
0361-5235,
35
, pp.
132
139
.
30.
“Standard of Tensile Testing for Solder Alloys,” 2003, The Society of Material Science, Japan, Kyoto, Japan.
31.
Ochoa
,
F.
,
Deng
,
X.
, and
Chawla
,
N.
, 2004, “
Effects of Cooling Rate on Creep Behavior of a Sn-3.5Ag Alloy
,”
J. Electron. Mater.
0361-5235,
33
, pp.
1596
1607
.
32.
Mayama
,
T.
, and
Sasaki
,
K.
, 2006, “
Investigation of Subsequent Viscoplastic Deformation of Austenitic Stainless Steel Subjected to Cyclic Preloading
,”
Int. J. Plast.
0749-6419,
22
, pp.
374
390
.
You do not currently have access to this content.