As the shrinkage and integration of devices, the creep behavior of tin-based alloys becomes important with microscales. In this paper, the behavior of creep deformation in solder alloys during a nanoindentation test was examined. Nanoindentation creep test was carried out for tin-based solder balls. Obtained results summarized as follows: (i) The stress exponent for power-law creep estimated can be evaluated from the evolution of hardness. These values obtained in the early stage corresponds with that of bulk within the range of high strain rate. (ii) The stress sensitivity decreases after stress relaxation in nanoindentation creep tests. The saturated value is 1 in three solder balls. (iii) The morphology of indented surface consists of three parts: initial indentation, power-law creep, and granular surface. It suggests that the transition from power-law creep to diffusion creep takes place. (iv) Finite element method analysis reveals stress and strain concentration appears in the vicinity of the tip. Strain field remains self-similar as the indentation proceeds. (v) The gradient of triaxial stresses below the tip in a nanoindentation test accelerates the creep strain rate due to the diffusive flow, relatively.

1.
Mayo
,
M. J.
, and
Nix
,
W. D.
, 1988, “
A Micro-indentation Study of Superplasticity in Pb, Sn, and Sn–38 wt% Pb
,”
Acta Metall.
0001-6160,
36
(
8
), pp.
2183
2192
.
2.
Geranmayeh
,
A. R.
, and
Mahmudi
,
R.
, 2005, “
Room-Temperature Indentation Creep of Lead-Free Sn-5%Sb Solder Alloy
,”
J. Electron. Mater.
0361-5235,
34
(
7
), pp.
1002
1009
.
3.
Chu
,
S. N. G.
, and
Li
,
J. C. M.
, 1977, “
Impression Creep; A New Creep Test
,”
J. Mater. Sci.
0022-2461,
12
, pp.
2200
2208
.
4.
Juhasz
,
A.
,
Tasnadi
,
P.
,
Szaszvari
,
P.
, and
Kovacs
,
I.
, 1986, “
Investigation of the Superplasticity of Tin-Lead Eutectic by Impression Creep Tests
,”
J. Mater. Sci.
0022-2461,
21
, pp.
3287
3291
.
5.
Sargent
,
P. M.
, and
Ashby
,
M. F.
, 1992, “
Indentation Creep
,”
Mater. Sci. Technol.
0267-0836,
8
(
7
), pp.
887
897
.
6.
Zhang
,
K.
,
Weertman
,
J. R.
, and
Eastman
,
J. A.
, 2004, “
The Influence of Time, Temperature, and Grain Size on Indentation Creep in High-Purity Nanocrystalline and Ultrafine Grain Copper
,”
Appl. Phys. Lett.
0003-6951,
85
(
22
), pp.
5197
5199
.
7.
Takagi
,
H.
,
Dao
,
M.
,
Fujiwara
,
M.
, and
Otsuka
,
M.
, 2003, “
Experimental and Computational Creep Characterization of Al-Mg Solid-Solution Alloy Trough Instrumented Indentation
,”
Philos. Mag.
1478-6435,
83
(
35
), pp.
3959
3976
.
8.
Langdon
,
T. G.
, 2002, “
Creep at Low Stresses: An Evaluation of Diffusion Creep and Harper-Dorn Creep as Viable Creep Mechanisms
,”
Metall. Mater. Trans. A
1073-5623,
33A
, pp.
249
259
.
9.
Mukherjee
,
A. K.
,
Bird
,
J. E.
, and
Dorn
,
J. E.
, 1969, “
Experimental Correlation for High-Temperature Creep
,”
Trans. Am. Soc. Met.
0096-7416,
62
, pp.
155
179
.
10.
Needleman
,
A.
, and
Rice
,
J. R.
, 1980, “
Plastic Creep Flow Effects in the Diffusive Cavitation of Grain Boundaries
,”
Acta Metall.
0001-6160,
28
, pp.
1315
1332
.
11.
Ashby
,
M. F.
, 1972, “
A First Report on Deformation-Mechanism Maps
,”
Acta Metall.
0001-6160,
20
, pp.
887
897
.
12.
Edward
,
G. H.
, and
Ashby
,
M. F.
, 1979, “
Intergranular Fracture During Power-Law Creep
,”
Acta Metall.
0001-6160,
27
, pp.
1505
1518
.
13.
Cocks
,
A. C. F.
, and
Searle
,
A. A.
, 1990, “
Cavity Growth in Ceramic Materials Under Multiaxial Stress States
,”
Acta Metall.
0001-6160,
38
, pp.
2493
2505
.
14.
Dao
,
M.
,
Chollacoop
,
N.
,
Vilet
,
K. J. V.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
, 2001, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
1359-6454,
49
, pp.
3899
3918
.
15.
Mukai
,
M.
,
Kawakami
,
T.
,
Takahashi
,
K.
,
Kishimoto
,
K.
, and
Shibuya
,
T.
, 1998, “
Thermal Fatigue Life of Solder Bumps in BGA
,”
JSME Int. J., Ser. A
1340-8046,
41
(
2
), pp.
260
266
.
16.
Shohji
,
I.
,
Yoshida
,
T.
,
Takahashi
,
T.
, and
Hioki
,
S.
, 2002, “
Tensile Properties of Sn-3.5Ag and Sn-3.5Ag-0.75Cu Lead-Free Solders
,”
Mater. Trans., JIM
0916-1821,
43
(
8
), pp.
1854
1857
.
17.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
A New Improved Technique for Determining Hardness and Elastic Modulus Using Load and Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1582
.
18.
Bolshakov
,
A.
, and
Pharr
,
G. M.
, 1998, “
Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques
,”
J. Mater. Res.
0884-2914,
13
, p.
1049
.
You do not currently have access to this content.