Based on the time dependent multiaxial deformation behavior of 96.5Sn-3.5Ag solder alloy, a constitutive model is proposed which considers the nonproportional multiaxial cyclic deformation properties. In the back stress evolution equations of this model, the nonproportionality which affects the back stress evolution rate is introduced. The approach for the determination of model parameters is proposed. The model is used to describe the time-dependent cyclic deformation behavior of 96.5Sn-3.5Ag solder alloy under cross, rectangular, rhombic, and double-triangular tensile–torsion multiaxial strain paths at different strain rates with different dwell time. The comparison between the predicted and experimental results demonstrates that the model can satisfactorily describe the time-dependent multiaxial cyclic deformation behavior under complicated nonproportional cyclic straining.

1.
Solomon
,
H. D.
, 1986, “
Creep, Strain Rate Sensitivity and Low Cycle Fatigue of 60/40 Solder
,”
Brazing and Soldering
,
11
, pp.
68
75
.
2.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
, 1995, “
Energy Approach to the Fatigue of 60/40 Solder, Part 1: Influence of Temperature and Cycle Frequency
,”
ASME J. Electron. Packag.
1043-7398,
117
(
6
), pp.
130
135
.
3.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
, 1996, “
Energy Approach to the Fatigue of 60/40 Solder, Part 2: Influence of Hold Time and Asymmetric Loading
,”
ASME J. Electron. Packag.
1043-7398,
118
(
6
), pp.
67
71
.
4.
Guo
,
Q.
,
Cutiongco
,
E. C.
,
Keer
,
L. M.
, and
Fine
,
M. E.
, 1992, “
Thermomechanical Fatigue Life Prediction of 63Sn∕37Pb Solder
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
145
151
.
5.
Frear
,
D. R.
,
Burchett
,
S. N.
,
Morgan
,
H. S.
, and
Lau
,
J. H.
, 1994,
The Mechanics of Solder Alloy Interconnects
,
Van Nostrand Reinhold
, New York.
6.
Lau
,
J. H.
, ed., 1991,
Solder Joint Reliability, Theory and Applications
,
Van Nostrand Reinhold
, New York.
7.
Wen
,
L. C.
, and
Ross
,
R. G.
, 1995, “
Comparison of LCC Solder Joint Life Predictions with Experimental Data
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
109
115
.
8.
Shine
,
M. C.
, and
Fox
,
L. R.
, 1987, “
Fatigue of Solder Joints in Surface Mount Devices
,”
Low Cycle Fatigue
, ASTM STP 942, ASTM, Philadelphia, PA, pp.
588
610
.
9.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
, 1999, “
A Modified Energy-based Low Cycle Fatigue Model for Eutectic Solder Alloy
,”
Scr. Mater.
1359-6462,
41
(
3
), pp.
289
296
.
10.
Shi
,
X. Q.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Wang
,
Z. P.
, 1999, “
Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn∕37Pb Solder Alloy
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
179
185
.
11.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
, 2000, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
0142-1123,
22
, pp.
217
228
.
12.
Skipor
,
A. F.
,
Harren
,
S. V.
, and
Botsis
,
J.
, 1996, “
On the Constitutive Response of 63/37 Sn∕Pb Eutectic Solder
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, pp.
1
11
.
13.
Qian
,
Z.
,
Ren
,
W.
, and
Liu
,
S.
, 1999, “
A Damage Coupling Framework of Unified Viscoplasticity for the Fatigue of Solder Alloys
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
162
168
.
14.
Yang
,
X. J.
,
Chow
,
C. L.
, and
Lau
,
K. J.
, 2004, “
A Unified Viscoplastic Description of 63Sn∕37Pb Solder Alloy Under Cyclic Straining and Stressing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
218
, pp.
1
12
.
15.
Yang
,
X. J.
,
Chow
,
C. L.
, and
Lau
,
K. J.
, 2003, “
A Time-dependent Cyclic Deformation and Failure Description of 63Sn∕37Pb Solder Alloy
,”
Int. J. Fatigue
0142-1123,
25
(
6
), pp.
533
546
.
16.
McDowell
,
D. L.
,
Miller
,
M. P.
, and
Brooks
,
D. C.
, 1994, “
A Unified Creep-plasticity Theory for Solder Alloys
,”
Fatigue of Electronic Materials
, ASTM STP 1153, ASTM, Philadelphia, PA, pp.
42
59
.
17.
Yang
,
X.
, and
Nassar
,
S.
, 2005, “
Constitutive Modeling of Time-dependent Cyclic Straining for Solder Alloy 63Sn-37Pb
,”
Mech. Mater.
0167-6636,
37
, pp.
801
814
.
18.
Busso
,
E. P.
,
Kitano
,
M.
, and
Kumazawa
,
T.
, 1992, “
A Visco-plastic Constitutive Model for 60/40 Tin-lead Solder Used in IC Package Joints
,”
ASME J. Eng. Mater. Technol.
0094-4289,
114
, pp.
331
337
.
19.
Chen
,
X.
,
Jin
,
D.
,
Sanake
,
M.
, and
Yamamoto
,
T.
, 2005, “
Multiaxial Low-Cycle Fatigue of 63Sn-37Pb Solder
,”
J. Electron. Mater.
0361-5235,
34
(
1
), pp.
L1
L6
.
20.
Cortez
,
R.
,
Cutiongco
,
E. C.
,
Fine
,
M. E.
, and
Jeannotte
,
D. A.
, 1992, “
Correlation of Uniaxial Tension-tension, Torsion, and Multiaxial Tension-Torsion Fatigue Failure in a 63Sn-37Pb Solder Alloy
,”
Proceedings of 42nd Electronic Components and Technology Conference
, pp.
354
359
, May 18–20, San Diego, CA.
21.
Yamamoto
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Yamada
,
T.
, 1995, “
Multiaxial Low Cycle Fatigue of 63Sn-37Pb Solder
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
44
(
503
), pp.
1080
1085
.
22.
Yamamoto
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 1997, “
Multiaxial Creep-fatigue of 63Sn-37Pb Solder at Elevated Temperature
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
46
(
8
), pp.
969
975
.
23.
Sakane
,
M.
,
Yamamoto
,
T.
,
Ohnami
,
M.
, and
Yamada
,
T.
, 1994, “
Tension-Torsion Multiaxial Creep-fatigue of 63Sn-37Pb Solder
,” AMD,
Mechanics and Materials for Electronic Packaging
, ASME Applied Mechanics Division, Vol.
187
, pp.
51
56
, ASME, New York, NY.
24.
Yang
,
X. J.
, 1997, “
Constitutive Description of Temperature-Dependent Nonproportional Cyclic Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
12
19
.
You do not currently have access to this content.