An analytical model is developed for predicting the time-dependent shearing displacement in area-array solder interconnects due to global CTE mismatch under thermal cycling. As a first step toward incorporating the creep deformation of the solder, the material is modeled as viscoelastic and temperature-independent. This permits one to invoke the correspondence principle of viscoelasticity to map the authors’ previously derived, closed-form solution for an elastic nonprismatic (concave, convex, or cylindrical) Timoshenko beam under shear loading into the associated viscoelastic solution. This leads to general analytical results for the frequency-dependent shear displacement amplitude in the critical joint. The results are expressed conveniently in terms of a “full-creep correction factor” and a “frequency correction factor,” which explicitly show the effects of the following parameters on the joint deformation: joint shape; array population; array, component, and substrate dimensions; viscoelastic material properties of the interconnect material; elastic properties of the component and substrate materials; and loading frequency. To demonstrate the technique for a particular viscoelastic constitutive law, the solder is assumed to behave elastically under hydrostatic loads and as a viscoelastic Kelvin solid under deviatoric conditions. For this special case the creep portion of the deformation is shown to be dependent upon only two dimensionless parameters: a dimensionless loading frequency and a material- and shape-dependent joint parameter. The results of the study may be useful in identifying design and process modifications that may improve the thermal fatigue life of area arrays. [S1043-7398(00)00404-7]

1.
Subbarayan
,
G.
,
1996
, “
A Procedure for Automated Shape and Life Prediction in Flip-Chip and BGA Solder Joints
,”
ASME J. Electron. Packag.
,
118
, No.
3
, pp.
127
133
.
2.
Subbarayan
,
G.
,
Li
,
Y.
, and
Mahajan
,
R. L.
,
1996
, “
Reliability Simulations for Solder Joints Using Stochastic Finite Element and Artificial Neural Network Models
,”
ASME J. Electron. Packag.
,
118
, No.
3
, pp.
148
156
.
3.
Nagaraj
,
B.
, and
Mahalingam
,
M.
,
1998
, “
Package-to-Board Attach Reliability-Methodology and Case Study on OMPAC Package
,”
ASME J. Electron. Packag.
,
120
, No.
3
, pp.
290
295
.
4.
Wang
,
J.
,
Qian
,
Z.
, and
Liu
,
S.
,
1998
, “
Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Modeling Technique
,”
ASME J. Electron. Packag.
,
120
, No.
3
, pp.
309
313
.
5.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.
6.
Volkersen
,
O.
,
1938
,
Luftfahrtforschung
,
15
, p.
41
41
.
7.
Goland
,
M.
, and
Reissner
,
E.
,
1944
, “
The Stresses in Cemented Joints
,”
ASME J. Appl. Mech.
,
11
, pp.
17
27
.
8.
Suhir, E., 1986, “Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies,” Proc., 1986 International Symposium on Microelectronics, Atlanta, GA, pp. 383–392.
9.
Mirman, B., and Mirman, I., 1992, “Thermal Stresses in Axisymmetric Bimaterial Assemblies: Microelectronic Applications,” Advances in Electronic Packaging 1992, Vol. 1, ASME Publ. EEP-Vol. 1-1, pp. 425–435.
10.
Buratynski, E. K., 1997, “Analysis of Bending and Shearing of Tri-Layer Laminations for Solder Joint Reliability,” Advances in Electronic Packaging 1997, Vol. 2, ASME Publ. EEP-Vol. 19-2, pp. 1671–1678.
11.
Gektin, V., Bar-Cohen, A., and Witzman, S., 1997, “Coffin-Manson Based Fatigue Analysis of Underfilled DCA,” Advances in Electronic Packaging 1997, Vol. 2, ASME Publ. EEP-Vol. 19-2, pp. 1655–1661.
12.
Le Gall, C. A., Qu, J., and McDowell, D. L., 1997, “Influence of Die Size on the Magnitude of Thermomechanical Stresses in Flip Chips Directly Attached to Printed Wiring Board,” Advances in Electronic Packaging 1997, Vol. 2, ASME Publ. EEP-Vol. 19-2, pp. 1663–1670.
13.
Heinrich
,
S. M.
,
Shakya
,
S.
,
Wang
,
Y.
,
Lee
,
P. S.
, and
Schroeder
,
S. A.
,
1996
, “
Improved Yield and Performance of Ball-Grid Array Packages: Design and Processing Guidelines for Uniform and Non-Uniform Arrays
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
19
, No.
2
, May, pp.
310
319
.
14.
Heinrich
,
S. M.
,
Shakya
,
S.
, and
Lee
,
P. S.
,
1997
, “
Improved Analytical Estimate of Global CTE Mismatch Displacement in Areal-Array Solder Joints
,”
ASME J. Electron. Packag.
,
119
, No.
4
, pp.
218
227
.
15.
Heinrich
,
S. M.
,
Shakya
,
S.
, and
Lee
,
P. S.
,
1998
, “
Effect of Component Heterogeneity on Global CTE Mismatch Displacement in Areal-Array Solder Interconnects
,”
ASME J. Electron. Packag.
,
120
, No.
1
, pp.
12
17
.
16.
Heinrich
,
S. M.
,
Shakya
,
S.
, and
Lee
,
P. S.
,
1998
, “
Shearing Deformation in Partial Areal Arrays: Analytical Results
,”
ASME J. Electron. Packag.
,
120
, No.
1
, pp.
18
23
.
17.
Swanson
,
J. A.
,
Heinrich
,
S. M.
, and
Lee
,
P. S.
,
1999
, “
An Elastoplastic Beam Model for Column-Grid-Array Solder Interconnects
,”
ASME J. Electron. Packag.
,
121
, No.
4
, pp.
303
311
.
18.
Shakya, S., 1995, “Simplified Stress Analysis of Axisymmetric Solder Joint Under Thermal Loading,” M.S. thesis, Marquette University, Milwaukee, WI.
19.
Shakya, S., Heinrich, S. M., Liang, J., and Lee, P. S., 1997, “Assessment of an Axisymmetric Analytical Model of a Square Areal-Array Assembly,” Structural Analysis in Microelectronics and Fiber Optics-1997, ASME-EEP Vol. 21, pp. 55–63; presented at the 1997 ASME International Mechanical Engineering Congress and Exposition, Dallas, TX, November 16–21.
20.
Hall
,
P. M.
,
1987
, “
Creep and Stress Relaxation in Solder Joints of Surface-Mounted Chip Carriers
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-12
, No.
4
, Dec. , pp.
556
565
.
21.
Flu¨gge, W., 1975, Viscoelasticity, Second Edition, Springer-Verlag, New York.
22.
Golden, J. M., and Graham, G. A. C., 1988, Boundary Value Problems in Linear Viscoelasticity, Springer-Verlag, New York.
23.
Heinrich, S. M., Shakya, S., Liang, J., and Lee, P. S., 1999, “An Analytical Model for Time-Dependent Shearing Deformation in Area-Array Interconnects,” Advances in Electronic Packaging 1999, Vol. 1, ASME-EEP Vol. 26-1, pp. 43–53; presented at InterPACK ’99, Lahaina, HI, June.
You do not currently have access to this content.