Fuel cell technology development is one of the main activities at CNR-TAE Institute. Particular attention was devoted to polymer electrolyte fuel cells (PEFCs), which are the most probable candidates as future energy suppliers for transportation and for portable and domestic applications. The research activity was addressed to new materials and component evolution, system design, and modeling. Because a single cell is not able to supply the desired voltages also for small electronic devices, a PEFC stack of different sizes must be evolved to match the application request. The research activity focused on two different areas: small size stacks for portable applications and medium power stacks (14kW) for transport and stationary applications. This activity was supported by modeling and computational fluid dynamic studies, and by the evolution of dedicated test station and measurement devices. The first result of PEFC stack research was the development of a 100W stack prototype working at low pressure and based on low Pt loading electrodes evolved at CNR-ITAE. Starting from this experience, a hydrogen fueled air breathing stack of 15W for portable application was realized. The scale up of the cell active area was approached by searching for a method to allow the design of the flow field with specified geometrical characteristics and fluid dynamic properties to maintain the performance reached in small active area cells. A computer-aided design method was evolved, and the design of the 200cm2 active area cell was realized, starting, from a 50cm2 laboratory cell.

1.
Ise
,
M.
,
Schimdt
,
H.
,
Waidhas
,
M.
, 2001, “
Materials and Construction Principles for PEM Fuel Cells
,”
Proceedings of the 1st European PEFC Forum
, Lucerne,
F. N.
Buchi
,
G. G.
Scherer
, and
A.
Wokaun
, eds., pp.
285
295
.
2.
Shores
,
D. A.
, and
Deluga
,
G. A.
, 2003, “
Basic Materials Corrosion Issues
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
273
285
.
3.
Mepsted
,
G. O.
, and
Moore
,
J. M.
, 2003, “
Performance and Durability of Bipolar Plate Materials
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
286
293
.
4.
Wind
,
J.
,
LaCroix
,
A.
,
Braeuninger
,
S.
,
Hedrich
,
P.
,
Heller
,
C.
, and
Schudy
,
M.
, 2003, “
Metal Bipolar Plates and Coatings
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
294
307
.
5.
Rossberg
,
K.
, and
Trapp
,
V.
, 2003, “
Graphite Based Bipolar Plates
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
308
314
.
6.
Wilkinson
,
D. P.
, and
Vanderleden
,
O.
, 2003, “
Serpentine Flow Field Design
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
315
324
.
7.
Nguyen
,
T. V.
, and
He
,
W.
, 2003, “
Interdigitated Flow Field Design
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
325
336
.
8.
Wang
,
C.-Y.
, 2003, “
Two-Phase Flow and Transport
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
337
347
.
9.
Passalacqua
,
E.
,
Squadrito
,
G.
,
Lufrano
,
F.
,
Patti
,
A.
, and
Giorgi
,
L.
, 2001, “
Effects of the Diffusion Layer Characteristics on the Performance of Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
449
454
.
10.
Passalacqua
,
E.
,
Lufrano
,
F.
,
Squadrito
,
G.
,
Patti
,
A.
, and
Giorgi
,
L.
, 2001, “
Nafion Content in the Catalyst Layer of Polymer Electrolyte Fuel Cells: Effects on Structure and Performance
,”
Electrochim. Acta
0013-4686,
46
, pp.
799
803
.
11.
Squadrito
,
G.
,
Maggio
,
G.
,
Passalacqua
,
E.
,
Lufrano
,
F.
, and
Patti
,
A.
, 1999, “
An Empirical Equation for Polymer Electrolyte Fuel Cell (PEFC) Behaviour
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
1449
1455
.
12.
Lufrano
,
F.
,
Passalacqua
,
E.
,
Squadrito
,
G.
,
Patti
,
A.
, and
Giorgi
,
L.
, 1999, “
Improvement in the Diffusion Characteristics of Low Pt-Loaded Electrodes for PEFCs
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
445
448
.
13.
Passalacqua
,
E.
,
Squadrito
,
G.
,
Lufrano
,
F.
,
Patti
,
A.
, and
Giorgi
,
L.
, 1998, “
Influence of the Structure in Low-Pt Loading Electrodes for Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
43
(
24
), pp.
3665
3673
.
14.
Squadrito
,
G.
,
Passalacqua
,
E.
,
Gatto
,
I.
, and
Patti
,
A.
, 2001, “
Evaluation of Gas Humidification by Liquid Water Direct Injection in PEFC
,”
Proc., of 4th International Symposium on Hydrogen Power Theoretical and Engineering Solutions (HYPOTHESYS IV)
, Stralsund, Germany,
Fachhochschule
Stralsund, Vol.
3
, pp.
511
515
.
15.
Squadrito
,
G.
,
Barbera
,
O.
,
Gatto
,
I.
,
Giacoppo
,
G.
,
Urbani
,
F.
, and
Passalacqua
,
E.
, 2004, “
Development of a 100We PEFC Stack Working at Low Pressure
,” First International Conference on Fuel Cell Development and Deployment, Storrs, CT.
16.
Dohle
,
H.
,
Jung
,
R.
,
Kimiaie
,
N.
,
Mergel
,
J.
, and
Müller
,
M.
, 2003, “
Interaction Between the Diffusion Layer and the Flow Field of Polymer Electrolyte Fuel Cells—Experiments and Simulation Studies
,”
J. Power Sources
0378-7753,
124
, pp.
371
384
.
17.
Kumar
,
A.
, and
Reddy
,
R. J.
, 2003, “
Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
113
, pp.
11
18
.
18.
Giacoppo
,
G.
,
Squadrito
,
G.
,
Urbani
,
F.
,
Passalacqua
,
E.
, and
Badami
,
M.
, 2003, “
PEFC Stack Development: Flow Field Computational Fluid Dynamic Studies
,”
Proc. of Hypothesis V
,
M.
Marini
and
G.
Spazzafumo
, eds., Porto Conte-Sassari, Italy,
SGE Editoriali
, Padova, pp.
707
716
.
19.
Squadrito
,
G.
,
Barbera
,
O.
,
Gatto
,
I.
,
Giacoppo
,
G.
,
Urbani
,
F.
, and
Passalacqua
,
E.
, 2005, “
CFD Analysis of the Flow-Field Scale-up Influence on the Electrodes Performance in a PEFC
,”
J. Power Sources
0378-7753,
152
, pp.
67
74
.
20.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
, 2004, “
Pressure Losses in Laminar Flow Through Serpentine Channels in Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
138
, pp.
1
13
.
21.
Kazim
,
A.
,
Liu
,
H. T.
, and
Forges
,
P.
, 1999, “
Modeling of Performance of PEM Fuel Cells With Conventional and Interdigitated Flow Field
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
1409
1416
.
22.
Schmidt
,
H.
,
Buchner
,
P.
,
Datz
,
A.
,
Dennerlein
,
K.
,
Lang
,
S.
, and
Waidhas
,
M.
, 2002, “
Low-Cost Air-Cooled PEFC Stacks
,”
J. Power Sources
0378-7753,
105
, pp.
243
249
.
23.
Wang
,
H.
, and
Turner
,
J. A.
, 2004, “
Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
128
, pp.
193
200
.
24.
Thoben
,
B.
, and
Siebke
,
A.
, 2004, “
Influence of Different Gas Diffusion Layers on the Water Management of the PEFC Cathode
,”
J. New Mater. Electrochem. Syst.
1480-2422,
7
, pp.
13
20
.
25.
West
,
A. C.
, and
Fuller
,
T. F.
, 1996, “
Influence of Rib Spacing in Proton-Exchange Membrane Electrode Assemblies
,”
J. Appl. Electrochem.
0021-891X,
26
, pp.
557
565
.
You do not currently have access to this content.