Graphical Abstract Figure

Changes of safety performance parameters of lithium batteries after the experiment: (a) maximum temperature at location a-a', (b) maximum temperature at location b-b', (c) maximum temperature at location c-c', (d) the curve of voltage at location a-a', (e) the curve of voltage at location b-b', (f) the curve of voltage at location c-c', (g) the capacity loss data of batteries, and (h) the internal resistance data of batteries

Graphical Abstract Figure

Changes of safety performance parameters of lithium batteries after the experiment: (a) maximum temperature at location a-a', (b) maximum temperature at location b-b', (c) maximum temperature at location c-c', (d) the curve of voltage at location a-a', (e) the curve of voltage at location b-b', (f) the curve of voltage at location c-c', (g) the capacity loss data of batteries, and (h) the internal resistance data of batteries

Close modal

Abstract

The safety issues of lithium-ion batteries under mechanical abuse conditions have earned widespread attention due to their high uncertainty and risk. In this article, extrusion tests were conducted on 10 Ah pouch cells, with different indenter shapes, loading locations, and state of charge (SOC). The voltage changes, temperature changes during the loading process, and microscopic structural changes of the cell electrodes after extrusion tests were analyzed to investigate the impact of different test conditions on the safety performance parameters of the cells. The tests included various unconventional locations that cannot be achieved under standard experimental conditions for lithium-ion batteries, better simulating the random collisions that lithium-ion batteries may experience in real-world scenarios. The results show that a sharp indenter induces earlier internal short circuits in the cells compared to a blunt indenter, leading to more severe thermal runaway reactions. Higher SOC is associated with faster average temperature rise rates, increased risk of thermal runaway, and more pronounced voltage drops at the moment of internal short circuits. The research results provide theoretical insights into the failure mechanisms of cells under mechanical abuse and offer valuable guidance for improving cell safety design.

References

1.
Zou
,
Z.
,
Xu
,
F.
,
Tian
,
H.
, and
Niu
,
X.
,
2023
, “
Testing and Impact Modeling of Lithium-Ion Prismatic Battery Under Quasi-Static and Dynamic Mechanical Abuse
,”
J. Energy Storage
,
68
(
12
), p.
107639
.
2.
Grey
,
C. P.
, and
Hall
,
D. S.
,
2020
, “
Prospects for Lithium-Ion Batteries and Beyond—A 2030 Vision
,”
Nat. Commun.
,
11
(
1
), pp.
1
4
.
3.
Zhan
,
R.
,
Wang
,
X.
,
Chen
,
Z.
,
Seh
,
Z. W.
,
Wang
,
L.
, and
Sun
,
Y.
,
2021
, “
Promises and Challenges of the Practical Implementation of Prelithiation in Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
11
(
35
), p.
2101565
.
4.
Vishnumurthy
,
K. A.
, and
Girish
,
K. H.
,
2021
, “
A Comprehensive Review of Battery Technology for E-Mobility
,”
J. Indian Chem. Soc.
,
98
(
10
), p.
100173
.
5.
Wang
,
L.
,
Chen
,
J.
,
Li
,
J.
,
Li
,
B.
, and
Wang
,
T.
,
2022
, “
A Novel Anisotropic Model for Multi-Stage Failure Threshold of Lithium-Ion Battery Subjected to Impact Loading
,”
Int. J. Mech. Sci.
,
236
(
24
), p.
107757
.
6.
Zhang
,
X.-C.
,
Zhang
,
T.
,
Liu
,
N.-N.
,
Yin
,
X.-D.
,
Wu
,
X.-N.
,
Han
,
H.-L.
,
Wang
,
Q.-L.
, and
Zhang
,
Y.-J.
,
2023
, “
Dynamic Crushing Behaviors and Failure of Cylindrical Lithium-Ion Batteries Subjected to Impact Loading
,”
Eng. Fail. Anal.
,
154
(
13
), p.
107653
.
7.
Jia
,
Y.
,
Uddin
,
M.
,
Li
,
Y.
, and
Xu
,
J.
,
2020
, “
Thermal Runaway Propagation Behavior Within 18,650 Lithium-Ion Battery Packs: A Modeling Study
,”
J. Energy Storage
,
31
(
5
), p.
101668
.
8.
Ren
,
D.
,
Feng
,
X.
,
Liu
,
L.
,
Hsu
,
H.
,
Lu
,
L.
,
Wang
,
L.
,
He
,
X.
, and
Ouyang
,
M.
,
2021
, “
Investigating the Relationship Between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries Under Thermal Abuse Condition
,”
Energy Storage Mater.
,
34
(
1
), pp.
563
573
.
9.
Zhang
,
F.
,
Feng
,
X.
,
Xu
,
C.
,
Jiang
,
F.
, and
Ouyang
,
M.
,
2022
, “
Thermal Runaway Front in Failure Propagation of Long-Shape Lithium-Ion Battery
,”
Int. J. Heat Mass Transfer
,
182
(
1
), p.
121928
.
10.
Zhang
,
Q.
,
Niu
,
J.
,
Zhao
,
Z.
, and
Wang
,
Q.
,
2022
, “
Research on the Effect of Thermal Runaway Gas Components and Explosion Limits of Lithium-Ion Batteries Under Different Charge States
,”
J. Energy Storage
,
45
(
1
), p.
103759
.
11.
Yuan
,
C.
,
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Generalized Separator Failure Criteria for Internal Short Circuit of Lithium-Ion Battery
,”
J. Power Sources
,
467
(
23
), p.
228360
.
12.
Lamb
,
J.
, and
Orendorff
,
C. J.
,
2014
, “
Evaluation of Mechanical Abuse Techniques in Lithium Ion Batteries
,”
J. Power Sources
,
247
(
3
), pp.
189
196
.
13.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2016
, “
Simulation and Experimental Study on Lithium Ion Battery Short Circuit
,”
Appl. Energy
,
173
(
13
), pp.
29
39
.
14.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
(
18
), pp.
377
385
.
15.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
(
36
), pp.
332
340
.
16.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
(
5
), pp.
307
321
.
17.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
(
12
), pp.
180
189
.
18.
Tsutsui
,
W.
,
Siegmund
,
T.
,
Parab
,
N. D.
,
Liao
,
H.
,
Nguyen
,
T. N.
, and
Chen
,
W.
,
2017
, “
State-of-Charge and Deformation-Rate Dependent Mechanical Behavior of Electrochemical Cells
,”
Exp. Mech.
,
58
(
4
), pp.
627
632
.
19.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
(
10
), pp.
205
216
.
20.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
(
3
), pp.
503
516
.
21.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
(
21
), pp.
467
476
.
22.
Li
,
W.
,
Zhu
,
J.
,
Xia
,
Y.
,
Gorji
,
M. B.
, and
Wierzbicki
,
T.
,
2019
, “
Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles
,”
Joule
,
3
(
11
), pp.
2703
2715
.
23.
Zhu
,
J.
,
Li
,
W.
,
Wierzbicki
,
T.
,
Xia
,
Y.
, and
Harding
,
J.
,
2019
, “
Deformation and Failure of Lithium-Ion Batteries Treated as a Discrete Layered Structure
,”
Int. J. Plast.
,
121
(
10
), pp.
293
311
.
24.
Manjunatha
,
M.
, and
Manjunatha
,
R.
,
2023
, “
Quasi-Static Failure Analysis of Lithium-Ion Battery (LIB) Used in Electric Vehicle
,”
Mater. Today: Proc.
,
90
(
49
), pp.
169
174
.
25.
Fang
,
W.
,
Ramadass
,
P.
, and
Zhang
,
Z.
,
2014
, “
Study of Internal Short in a Li-Ion Cell—II. Numerical Investigation Using a 3d Electrochemical-Thermal Model
,”
J. Power Sources
,
248
(
4
), pp.
1090
1098
.
26.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1352
A1364
.
27.
Ramadass
,
P.
,
Fang
,
W.
, and
Zhang
,
Z.
,
2014
, “
Study of Internal Short in a Li-Ion Cell. I. Test Method Development Using Infra-Red Imaging Technique
,”
J. Power Sources
,
248
(
4
), pp.
769
776
.
28.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
(
18
), pp.
102
113
.
29.
Mallarapu
,
A.
,
Kim
,
J.
,
Carney
,
K.
,
Dubois
,
P.
, and
Santhanagopalan
,
S.
,
2020
, “
Modeling Extreme Deformations in Lithium Ion Batteries
,”
Etransportation
,
4
(
2
), p.
100065
.
30.
Chen
,
W.
,
Jiang
,
J.
, and
Wen
,
J.
,
2020
, “
Thermal Runaway Induced by Dynamic Overcharge of Lithium-Ion Batteries Under Different Environmental Conditions
,”
J. Therm. Anal. Calorim.
,
146
(
2
), pp.
855
863
.
31.
Zeng
,
G.
,
Bai
,
Z.
,
Huang
,
P.
, and
Wang
,
Q.
,
2020
, “
Thermal Safety Study of Li-Ion Batteries Under Limited Overcharge Abuse Based on Coupled Electrochemical-Thermal Model
,”
Int. J. Energy Res.
,
44
(
5
), pp.
3607
3625
.
32.
Ren
,
D.
,
Liu
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2018
, “
Model-Based Thermal Runaway Prediction of Lithium-Ion Batteries From Kinetics Analysis of Cell Components
,”
Appl. Energy
,
228
(
20
), pp.
633
644
.
33.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
.
34.
Bai
,
J.
,
Wang
,
Z.
,
Gao
,
T.
,
Bai
,
W.
, and
Wang
,
J.
,
2021
, “
Effect of Mechanical Extrusion Force on Thermal Runaway of Lithium-Ion Batteries Caused by Flat Heating
,”
J. Power Sources
,
507
(
27
), p.
230305
.
35.
Zhang
,
M.
,
Liu
,
L.
,
Stefanopoulou
,
A.
,
Siegel
,
J.
,
Lu
,
L.
,
He
,
X.
, and
Ouyang
,
M.
,
2017
, “
Fusing Phenomenon of Lithium-Ion Battery Internal Short Circuit
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
A2738
A2745
.
You do not currently have access to this content.