Abstract

Due to the high theoretical capacity, high platform voltage, stable structure, and mild conditions for synthesis, LiVOPO4 is expected to become the next generation of cathode materials for lithium-ion batteries (LIBs). However, due to the relatively weak ionic conductivity, its commercial application has been largely limited. The paper reported that acetylene black was used as the reducing agent and the pure phase nanostructured orthorhombic β-LiVOPO4 was obtained by carbothermal reduction method. A significant improvement in ionic conductivity was achieved, and the results were compared with previous studies, the initial discharge capacity of the material was considerably enhanced. The results show that the electrical conductivity and the initial discharge capacity of the material were also significantly improved. The sample obtained by holding at 600 °C for 10 h exhibited a maximum discharge capacity of 141.4 mAh g−1 between 3 V and 4.5 V at 0.05 C, with a value of 136.3 mAh g−1, retained after 50 cycles. This represents capacity retention of 96.39%.

References

1.
Delmas
,
C.
,
Maccario
,
M.
,
Croguennec
,
L.
,
Le Cras
,
F.
, and
Weill
,
F.
,
2008
, “
Lithium Deintercalation in LiFePO4 Nanoparticles via a Domino-Cascade Mode
,”
Nat. Mater.
,
7
(
8
), pp.
665
671
. 10.1038/nmat2230
2.
Zhou
,
G.-W.
,
Wang
,
J.
,
Gao
,
P.
,
Yang
,
X.
,
He
,
Y.-S.
,
Liao
,
X.-Z.
,
Yang
,
J.
, and
Ma
,
Z.-F.
,
2013
, “
A Facile Spray Drying Route for the 3D Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes
,”
Ind. Eng. Chem. Res.
,
52
(
3
), pp.
1197
1204
. 10.1021/ie302469b
3.
Fu
,
P.
,
Zhao
,
Y.
,
Dong
,
Y.
,
An
,
X.
, and
Shen
,
G.
,
2006
, “
Synthesis of Li3V2(PO4)3 With High Performance by Optimized Solid-State Synthesis Routine
,”
J. Power Sources
,
162
(
1
), pp.
651
657
. 10.1016/j.jpowsour.2006.07.029
4.
Chen
,
L.
,
Yan
,
B.
,
Xu
,
J.
,
Wang
,
C.
,
Chao
,
Y.
,
Jiang
,
X.
, and
Yang
,
G.
,
2015
, “
Bicontinuous Structure of Li3V(PO4)3 Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
25
), pp.
13934
13943
. 10.1021/acsami.5b02618
5.
Shi
,
Y.
,
Zhou
,
H.
,
Britto
,
S.
,
Seymour
,
I. D.
,
Wiaderek
,
K. M.
,
Omenya
,
F.
,
Chernova
,
N. A.
,
Chapman
,
K. W.
,
Grey
,
C. P.
, and
Whittingham
,
M. S.
,
2019
, “
A High-Performance Solid-State Synthesized LiVOPO4 for Lithium-ion Batteries
,”
Electrochem. Commun.
,
105
(
8
), pp.
106491
106496
. 10.1016/j.elecom.2019.106491
6.
He
,
G.
,
Kan
,
W. H.
, and
Manthiram
,
A.
,
2018
, “
Delithiation/Lithiation Behaviors of Three Polymorphs of LiVOPO4
,”
Chem. Commun.
,
54
(
94
), pp.
13224
13227
. 10.1039/c8cc07446a
7.
Barker
,
J.
,
Gover
,
R. K. B.
,
Burns
,
P.
,
Bryan
,
A.
,
Saidi
,
M. Y.
, and
Swoyer
,
J. L.
,
2005
, “
Structural and Electrochemical Properties of Lithium Vanadium Fluorophosphate, LiVPO4F
,”
J. Power Sources
,
146
(
1–2
), pp.
516
520
. 10.1016/j.jpowsour.2005.03.126
8.
Wang
,
J.
,
Li
,
X.
,
Wang
,
Z.
,
Huang
,
B.
,
Wang
,
Z.
, and
Guo
,
H.
,
2014
, “
Nanosized LiVPO4F/Graphene Composite: A Promising Anode Material for Lithium ion Batteries
,”
J. Power Sources
,
251
(
2
), pp.
325
330
. 10.1016/j.jpowsour.2013.11.095
9.
Zhang
,
B.
,
Han
,
Y.-D.
,
Zheng
,
J.-C.
,
Zhang
,
J.-F.
,
Shen
,
C.
,
Ming
,
L.
,
Yuan
,
X.-B.
, and
Li
,
H.
,
2014
, “
VOPO4 Nanosheets as Anode Materials for Lithium-ion Batteries
,”
Chem. Commun.
,
50
(
76
), pp.
11132
11134
. 10.1039/c4cc03781b
10.
Girgsdies
,
F.
,
Schneider
,
M.
,
Brückner
,
A.
,
Ressler
,
T.
, and
Schlögl
,
R.
,
2009
, “
The Crystal Structure of δ-VOPO4 and its Relationship to ω-VOPO4
,”
Solid State Sci.
,
11
(
7
), pp.
1258
1264
. 10.1016/j.solidstatesciences.2009.03.017
11.
Gaubicher
,
J.
,
Le Mercier
,
T.
,
Chabre
,
Y.
,
Angenault
,
J.
, and
Quarton
,
M.
,
1999
, “
Li/ β- VOPO 4: A New 4V System for Lithium Batteries
,”
J. Electrochem. Soc.
,
146
(
12
), pp.
4375
4379
. 10.1149/1.1392646
12.
Azmi
,
B. M.
,
Ishihara
,
T.
,
Nishiguchi
,
H.
, and
Takita
,
Y.
,
2005
, “
LiVOPO4 as a new Cathode Materials for Li-ion Rechargeable Battery
,”
J. Power Sources
,
146
(
1–2
), pp.
525
528
. 10.1016/j.jpowsour.2005.03.101
13.
Lii
,
K. H.
,
Li
,
C. H.
,
Cheng
,
C. Y.
, and
Wang
,
S. L.
,
1991
, “
Hydrothermal Synthesis, Structure, and Magnetic Properties of a new Polymorph of Lithium Vanadyl(IV) Orthophosphate: β-LiVOPO4
,”
J. Solid State Chem.
,
95
(
2
), pp.
352
359
. 10.1016/0022-4596(91)90116-Y
14.
Harrison
,
K. L.
, and
Manthiram
,
A.
,
2011
, “
Microwave-Assisted Solvothermal Synthesis and Characterization of Metastable LiFe1−x(VO)xPO4 Cathodes
,”
Inorg. Chem.
,
50
(
8
), pp.
3613
3620
. 10.1021/ic1025747
15.
Shen
,
C.
,
Zhang
,
B.
,
Zheng
,
J.-C.
,
Han
,
Y.-D.
, and
Zhang
,
J.-F.
,
2015
, “
Effect of Sintering Time on the Synthesize of the Multi-Layered Core-Shell LiVOPO4-Li3V2(PO4)3 Composite for Li-ion Batteries
,”
J. Alloys Compd.
,
622
(
9
), pp.
771
776
. 10.1016/j.jallcom.2014.10.198
16.
Saravanan
,
K.
,
Lee
,
H. S.
,
Kuezma
,
M.
,
Vittal
,
J. J.
, and
Balaya
,
P.
,
2011
, “
Hollow α-LiVOPO4 Sphere Cathodes for High Energy Li-ion Battery Application
,”
J. Mater. Chem.
,
21
(
27
), pp.
10042
10050
. 10.1039/c0jm04428h
17.
Ren
,
M. M.
,
Zhou
,
Z.
,
Su
,
L. W.
, and
Gao
,
X. P.
,
2009
, “
LiVOPO4: A Cathode Material for 4 V Lithium ion Batteries
,”
J. Power Sources
,
189
(
1
), pp.
786
789
. 10.1016/j.jpowsour.2008.07.092
18.
Shen
,
C.
,
Zheng
,
J.-C.
,
Zhang
,
B.
,
Han
,
Y.-D.
,
Zhang
,
J.-F.
,
Ming
,
L.
,
Li
,
H.
, and
Yuan
,
X.-B.
,
2014
, “
Composite Cathode Material β-LiVOPO4/LaPO4 with Enhanced Electrochemical Properties for Lithium ion Batteries
,”
RSC Adv.
,
4
(
77
), pp.
40912
40916
. 10.1039/c4ra06796g
19.
Lashier
,
M. E.
, and
Schrader
,
G. L.
,
1991
, “
Reactive Lattice Oxygen Sites for C4-Hydrocarbon Selective Oxidation Over β-VOPO4
,”
J. Catal.
,
128
(
1
), pp.
113
125
. 10.1016/0021-9517(91)90071-B
20.
Kobayashi
,
Y.
,
Miyashiro
,
H.
,
Takei
,
K.
,
Shigemura
,
H.
,
Tabuchi
,
M.
,
Kageyama
,
H.
, and
Iwahori
,
T.
,
2003
, “
5 V Class All-Solid-State Composite Lithium Battery with Li3PO4 Coated LiNi0.5Mn1.5O 4
,”
J. Electrochem. Soc.
,
150
(
12
), pp.
A1577
A1582
. 10.1149/1.1619988
21.
Yang
,
T.
,
Zhu
,
Y.
,
Ruan
,
Q.
,
Du
,
X.
,
Zeng
,
Y.
, and
Xu
,
F.
,
2010
, “
Synthesis of h-AlN Nanowires via Carbothermal Reduction and Nitridation Method Using Acetylene Black
,”
J. Nanosci. Nanotechnol.
,
10
(
1
), pp.
421
425
. 10.1166/jnn.2010.2019
22.
Wang
,
L.
,
Yang
,
L.
,
Gong
,
L.
,
Jiang
,
X.
,
Yuan
,
K.
, and
Hu
,
Z.
,
2011
, “
Synthesis of LiVOPO4 for Cathode Materials by Coordination and Microwave Sintering
,”
Electrochim. Acta
,
56
(
20
), pp.
6906
6911
. 10.1016/j.electacta.2011.06.028
23.
Yang
,
Y.
,
Fang
,
H.
,
Zheng
,
J.
,
Li
,
L.
,
Li
,
G.
, and
Yan
,
G.
,
2008
, “
Towards the Understanding of Poor Electrochemical Activity of Triclinic LiVOPO4: Experimental Characterization and Theoretical Investigations
,”
Solid State Sci.
,
10
(
10
), pp.
1292
1298
. 10.1016/j.solidstatesciences.2008.01.028
24.
Fu
,
P.
,
Zhao
,
Y.
,
Dong
,
Y.
,
An
,
X.
, and
Shen
,
G.
,
2006
, “
Low Temperature Solid-State Synthesis Routine and Mechanism for Li3V2(PO4)3 Using LiF as Lithium Precursor
,”
Electrochim. Acta
,
52
(
3
), pp.
1003
1008
. 10.1016/j.electacta.2006.06.039
25.
Wang
,
L.
,
Jiang
,
X.
,
Li
,
X.
,
Pi
,
X.
,
Ren
,
Y.
, and
Wu
,
F.
,
2010
, “
Rapid Preparation and Electrochemical Behavior of Carbon-Coated Li3V2(PO4)3 From wet Coordination
,”
Electrochim. Acta
,
55
(
18
), pp.
5057
5062
. 10.1016/j.electacta.2010.03.062
26.
Chen
,
Q.
,
Wang
,
J.
,
Tang
,
Z.
,
He
,
W.
,
Shao
,
H.
, and
Zhang
,
J.
,
2007
, “
Electrochemical Performance of the Carbon Coated Li3V2(PO4)3 Cathode Material Synthesized by a sol–gel Method
,”
Electrochim. Acta
,
52
(
16
), pp.
5251
5257
. 10.1016/j.electacta.2007.02.039
27.
Liu
,
H.
,
Cheng
,
C.
,
Huang
,
X.
, and
Li
,
J.
,
2010
, “
Hydrothermal Synthesis and Rate Capacity Studies of Li3V2(PO4)3 Nanorods as Cathode Material for Lithium-ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8461
8465
. 10.1016/j.electacta.2010.07.049
28.
Tang
,
A.
,
He
,
Z.
,
Shen
,
J.
, and
Xu
,
G.
,
2012
, “
Synthesis and Characterization of LiVOPO4 Cathode Material by Solid-State Method
,”
Adv. Mater. Res.
,
554–556
, pp.
436
439
. 10.4028/www.scientific.net/AMR.554-556.436
29.
Wick
,
P.
,
Manser
,
P.
,
Limbach
,
L. K.
,
Dettlaff-Weglikowsk
,
U.
,
Krumeich
,
F.
,
Roth
,
S.
,
Stark
,
W. J.
, and
Bruinink
,
A.
,
2007
, “
The Degree and Kind of Agglomeration Affect Carbon Nanotube Cytotoxicity
,”
Toxicol. Lett.
,
168
(
2
), pp.
121
131
. 10.1016/j.toxlet.2006.08.019
30.
Rana
,
J.
,
Shi
,
Y.
,
Zuba
,
M. J.
,
Wiaderek
,
K. M.
,
Feng
,
J.
,
Zhou
,
H.
,
Ding
,
J.
,
Wu
,
T.
,
Cibin
,
G.
,
Balasubramanian
,
M.
,
Omenya
,
F.
,
Chernova
,
N. A.
,
Chapman
,
K. W.
,
Whittingham
,
M. S.
, and
Piper
,
L. F. J.
,
2018
, “
Role of Disorder in Limiting the True Multi-Electron Redox in ɛ-LiVOPO4
,”
J. Mater. Chem. A
,
6
(
42
), pp.
20669
20677
. 10.1039/c8ta06469e
31.
Xie
,
H.-M.
,
Wang
,
R.-S.
,
Ying
,
J.-R.
,
Zhang
,
L.-Y.
,
Jalbout
,
A. F.
,
Yu
,
H.-Y.
,
Yang
,
G.-L.
,
Pan
,
X.-M.
, and
Su
,
Z.-M.
,
2010
, “
Optimized LiFePO4–Polyacene Cathode Material for Lithium-Ion Batteries
,”
Adv. Mater.
,
18
(
19
), pp.
2609
2613
. 10.1002/adma.200600578
32.
Santner
,
H. J.
,
Möller
,
K.-C.
,
Ivančo
,
J.
,
Ramsey
,
M. G.
,
Netzer
,
F. P.
,
Yamaguchi
,
S.
,
Besenhard
,
J. O.
, and
Winter
,
M.
,
2003
, “
Acrylic Acid Nitrile, a Film-Forming Electrolyte Component for Lithium-Ion Batteries, Which Belongs to the Family of Additives Containing Vinyl Groups
,”
J. Power Sources
,
119–121
(
6
), pp.
368
372
. 10.1016/S0378-7753(03)00268-4
You do not currently have access to this content.