Abstract

Nanoporous metals fabricated by dealloying have a unique bi-continuous, sponge-like porous structure with ultra-high surface area. The unique properties of these materials, especially nanoporous gold, have numerous potential applications in sensors and actuators and in energy-related applications such as catalytic materials, super-capacitors, and battery supports. The degree of porosity and size of the metal ligaments are critical parameters that determine many properties and thus govern the functionalities of nanoporous metals in many applications including energy storage and conversion. We used Fresnel coherent diffractive imaging combined with tomographic reconstruction to quantify the nanoscale three-dimensional spatial distribution and homogeneity of the porosity and ligament size within a bulk sample of nanoporous gold. The average porosity and its standard deviation along the axial direction through the sample were determined, as well as the characteristic feature size and its standard deviation. The result shows that free corrosion is an effective way to create homogeneous nanoporous metals with sample sizes on the order of 1 µm.

References

References
1.
Tappan
,
B. C.
,
Steiner
,
S. A.
, and
Luther
,
E. P.
,
2010
, “
Nanoporous Metal Foams
,”
Angew. Chem. Int. Ed.
,
49
(
27
), pp.
4544
4565
. 10.1002/anie.200902994
2.
Ding
,
Y.
, and
Chen
,
M. W.
,
2009
, “
Nanoporous Metals for Catalytic and Optical Applications
,”
MRS Bull.
,
34
(
8
), pp.
569
576
. 10.1557/mrs2009.156
3.
Weissmüller
,
J.
,
Newman
,
R. C.
,
Jin
,
H. J.
,
Hodge
,
A. M.
, and
Kysar
,
J. W.
,
2009
, “
Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties
,”
MRS Bull.
,
34
(
8
), pp.
577
586
. 10.1557/mrs2009.157
4.
McCue
,
I.
,
Benn
,
E.
,
Gaskey
,
B.
, and
Erlebacher
,
J.
,
2016
, “
Dealloying and Dealloyed Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
263
286
. 10.1146/annurev-matsci-070115-031739
5.
Chen
,
Q.
, and
Sieradzki
,
K.
,
2013
, “
Mechanisms and Morphology Evolution in Dealloying
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
C226
C231
. 10.1149/2.064306jes
6.
Erlebacher
,
J.
,
Aziz
,
M. J.
,
Karma
,
A.
,
Dimitrov
,
N.
, and
Sieradzki
,
K.
,
2001
, “
Evolution of Nanoporosity in Dealloying
,”
Nature
,
410
(
6827
), pp.
450
453
. 10.1038/35068529
7.
Erlebacher
,
J.
, and
Sieradzki
,
K.
,
2003
, “
Pattern Formation During Dealloying
,”
Scr. Mater.
,
49
(
10
), pp.
991
996
. 10.1016/S1359-6462(03)00471-8
8.
Geslin
,
P. A.
,
McCue
,
I.
,
Gaskey
,
B.
,
Erlebacher
,
J.
, and
Karma
,
A.
,
2015
, “
Topology-Generating Interfacial Pattern Formation During Liquid Metal Dealloying
,”
Nat. Commun.
,
6
(
1
), p.
8
.
9.
McCue
,
I.
,
Gaskey
,
B.
,
Geslin
,
P. A.
,
Karma
,
A.
, and
Erlebacher
,
J.
,
2016
, “
Kinetics and Morphological Evolution of Liquid Metal Dealloying
,”
Acta Mater.
,
115
, pp.
10
23
. 10.1016/j.actamat.2016.05.032
10.
Zhao
,
C.
,
Wada
,
T.
,
De Andrade
,
V.
,
Williams
,
G. J.
,
Gelb
,
J.
,
Li
,
L.
,
Thieme
,
J.
,
Kato
,
H.
, and
Chen-Wiegart
,
Y.-C. K.
,
2017
, “
Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying
,”
ACS Appl. Mater. Interfaces
,
9
(
39
), pp.
34172
34184
. 10.1021/acsami.7b04659
11.
Wada
,
T.
,
Yubuta
,
K.
,
Inoue
,
A.
, and
Kato
,
H.
,
2011
, “
Dealloying by Metallic Melt
,”
Mater. Lett.
,
65
(
7
), pp.
1076
1078
. 10.1016/j.matlet.2011.01.054
12.
Chen-Wiegart
,
Y. C. K.
,
Wada
,
T.
,
Butakov
,
N.
,
Xiao
,
X. H.
,
De Carlo
,
F.
,
Kato
,
H.
,
Wang
,
J.
,
Dunand
,
D. C.
, and
Maire
,
E.
,
2013
, “
3D Morphological Evolution of Porous Titanium by X-Ray Micro- and Nano-Tomography
,”
J. Mater. Res.
,
28
(
17
), pp.
2444
2452
. 10.1557/jmr.2013.151
13.
Wada
,
T.
,
Yubuta
,
K.
, and
Kato
,
H.
,
2016
, “
Evolution of a Bicontinuous Nanostructure via a Solid-State Interfacial Dealloying Reaction
,”
Scr. Mater.
,
118
, pp.
33
36
. 10.1016/j.scriptamat.2016.03.008
14.
McCue
,
I.
, and
Demkowicz
,
M. J.
,
2017
, “
Alloy Design Criteria for Solid Metal Dealloying of Thin Films
,”
JOM
,
69
(
11
), pp.
2199
2205
. 10.1007/s11837-017-2571-8
15.
Zhao
,
C. H.
,
Kisslinger
,
K.
,
Huang
,
X. J.
,
Lu
,
M.
,
Camino
,
F.
,
Lin
,
C. H.
,
Yan
,
H. F.
,
Nazaretski
,
E.
,
Chu
,
Y.
,
Ravel
,
B.
,
Liu
,
M. Z.
, and
Chen-Wiegart
,
Y. C. K.
,
2019
, “
Bi-Continuous Pattern Formation in Thin Films via Solid-State Interfacial Dealloying Studied by Multimodal Characterization
,”
Mater. Horiz.
,
6
(
10
), pp.
1991
2002
. 10.1039/C9MH00669A
16.
Han
,
J. H.
,
Li
,
C.
,
Lu
,
Z.
,
Wang
,
H.
,
Wang
,
Z. L.
,
Watanabe
,
K.
, and
Chen
,
M. W.
,
2019
, “
Vapor Phase Dealloying: A Versatile Approach for Fabricating 3D Porous Materials
,”
Acta Mater.
,
163
, pp.
161
172
. 10.1016/j.actamat.2018.10.012
17.
Lu
,
Z.
,
Li
,
C.
,
Han
,
J. H.
,
Zhang
,
F.
,
Liu
,
P.
,
Wang
,
H.
,
Wang
,
Z. L.
,
Cheng
,
C.
,
Chen
,
L. H.
,
Hirata
,
A.
,
Fujita
,
T.
,
Erlebacher
,
J.
, and
Chen
,
M. W.
,
2018
, “
Three-Dimensional Bicontinuous Nanoporous Materials by Vapor Phase Dealloying
,”
Nat. Commun.
,
9
(
1
), pp.
1
7
.
18.
Sun
,
Y. X.
, and
Ren
,
Y. B.
,
2015
, “
New Preparation Method of Porous Copper Powder Through Vacuum Dealloying
,”
Vacuum
,
122
, pp.
215
217
. 10.1016/j.vacuum.2015.09.031
19.
Chen
,
Q.
,
2014
, “
Bi-Continuous Nanoporous Structure Formation via Compound Decomposition
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
H643
H646
. 10.1149/2.0571410jes
20.
Zhao
,
C. H.
,
Wada
,
T.
,
De Andrade
,
V.
,
Gursoy
,
D.
,
Kato
,
H.
, and
Chen-Wiegart
,
Y. C. K.
,
2018
, “
Imaging of 3D Morphological Evolution of Nanoporous Silicon Anode in Lithium Ion Battery by X-Ray Nano-Tomography
,”
Nano Energy
,
52
, pp.
381
390
. 10.1016/j.nanoen.2018.08.009
21.
Wada
,
T.
,
Yamada
,
J.
, and
Kato
,
H.
,
2016
, “
Preparation of Three-Dimensional Nanoporous Si Using Dealloying by Metallic Melt and Application as a Lithium-Ion Rechargeable Battery Negative Electrode
,”
J. Power Sources
,
306
, pp.
8
16
. 10.1016/j.jpowsour.2015.11.079
22.
Saager
,
S.
,
Scheffel
,
B.
,
Zywitzki
,
O.
,
Modes
,
T.
,
Piwko
,
M.
,
Doerfler
,
S.
,
Althues
,
H.
, and
Metzner
,
C.
,
2019
, “
Porous Silicon Thin Films as Anodes for Lithium Ion Batteries Deposited by Co-Evaporation of Silicon and Zinc
,”
Surf. Coat. Technol.
,
358
, pp.
586
593
. 10.1016/j.surfcoat.2018.11.064
23.
Cook
,
J. B.
,
Detsi
,
E.
,
Liu
,
Y. J.
,
Liang
,
Y. L.
,
Kim
,
H. S.
,
Petrissans
,
X.
,
Dunn
,
B.
, and
Tolbert
,
S. H.
,
2017
, “
Nanoporous Tin With a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode
,”
ACS Appl. Mater. Interfaces
,
9
(
1
), pp.
293
303
. 10.1021/acsami.6b09014
24.
Wada
,
T.
,
Ichitsubo
,
T.
,
Yubuta
,
K.
,
Segawa
,
H.
,
Yoshida
,
H.
, and
Kato
,
H.
,
2014
, “
Bulk-Nanoporous-Silicon Negative Electrode With Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process
,”
Nano Lett.
,
14
(
8
), pp.
4505
4510
. 10.1021/nl501500g
25.
Detsi
,
E.
,
Petrissans
,
X.
,
Yan
,
Y.
,
Cook
,
J. B.
,
Deng
,
Z. L.
,
Liang
,
Y. L.
,
Dunn
,
B.
, and
Tolbert
,
S. H.
,
2018
, “
Tuning Ligament Shape in Dealloyed Nanoporous Tin and the Impact of Nanoscale Morphology on Its Applications in Na-Ion Alloy Battery Anodes
,”
Phys. Rev. Mater.
,
2
(
5
), p.
055404
. 10.1103/PhysRevMaterials.2.055404
26.
Li
,
H. M.
,
Wang
,
K. L.
,
Zhou
,
M.
,
Li
,
W.
,
Tao
,
H. W.
,
Wang
,
R. X.
,
Cheng
,
S. J.
, and
Jiang
,
K.
,
2019
, “
Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications
,”
ACS Nano
,
13
(
8
), pp.
9533
9540
. 10.1021/acsnano.9b04520
27.
Sang
,
Z. Y.
,
Su
,
D.
,
Wang
,
J. S.
,
Liu
,
Y.
, and
Ji
,
H. M.
,
2020
, “
Bi-Continuous Nanoporous Carbon Sphere Derived From SiOC as High-Performance Anodes for PIBs
,”
Chem. Eng. J.
,
381
, p.
122677
. 10.1016/j.cej.2019.122677
28.
Snyder
,
J.
,
Fujita
,
T.
,
Chen
,
M. W.
, and
Erlebacher
,
J.
,
2010
, “
Oxygen Reduction in Nanoporous Metal—Ionic Liquid Composite Electrocatalysts
,”
Nat. Mater.
,
9
(
11
), pp.
904
907
. 10.1038/nmat2878
29.
Lang
,
X. Y.
,
Hirata
,
A.
,
Fujita
,
T.
, and
Chen
,
M. W.
,
2011
, “
Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors
,”
Nat. Nanotechnol.
,
6
(
4
), pp.
232
236
. 10.1038/nnano.2011.13
30.
Wittstock
,
A.
,
Zielasek
,
V.
,
Biener
,
J.
,
Friend
,
C. M.
, and
Baumer
,
M.
,
2010
, “
Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature
,”
Science
,
327
(
5963)
, pp.
319
322
. 10.1126/science.1183591
31.
Chatterjee
,
S.
,
Griego
,
C.
,
Hart
,
J. L.
,
Li
,
Y. W.
,
Taheri
,
M. L.
,
Keith
,
J.
, and
Snyder
,
J. D.
,
2019
, “
Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate
,”
ACS Catal.
,
9
(
6
), pp.
5290
5301
. 10.1021/acscatal.9b00330
32.
Chen
,
J. Y.
,
Li
,
Y.
,
Lu
,
N. L.
,
Tian
,
C. H.
,
Han
,
Z. D.
,
Zhang
,
L.
,
Fang
,
Y.
,
Qian
,
B.
,
Jiang
,
X. F.
, and
Cui
,
R. J.
,
2018
, “
Nanoporous PdCe Bimetallic Nanocubes With High Catalytic Activity Towards Ethanol Electro-Oxidation and the Oxygen Reduction Reaction in Alkaline Media
,”
J. Mater. Chem. A
,
6
(
46
), pp.
23560
23568
. 10.1039/C8TA08445A
33.
Kertis
,
F.
,
Snyder
,
J.
,
Govada
,
L.
,
Khurshid
,
S.
,
Chayen
,
N.
, and
Erlebacher
,
J.
,
2010
, “
Structure/Processing Relationships in the Fabrication of Nanoporous Gold
,”
JOM
,
62
(
6
), pp.
50
56
. 10.1007/s11837-010-0087-6
34.
Graf
,
M.
,
Roschning
,
B.
, and
Weissmuller
,
J.
,
2017
, “
Nanoporous Gold by Alloy Corrosion: Method-Structure–Property Relationships
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
C194
C200
. 10.1149/2.1681704jes
35.
Zheng
,
Y. J.
,
Xu
,
Y. C.
,
Lin
,
L. L.
,
Li
,
Y.
,
Chen
,
W.
,
Chen
,
J. Y.
,
Lei
,
Y.
,
Lin
,
L. Q.
,
Liu
,
A. L.
,
Lin
,
X. H.
, and
Weng
,
S. H.
,
2019
, “
Nanoporous Gold Electrode Prepared From Two-Step Square Wave Voltammetry (SWV) and Its Application for Electrochemical DNA Biosensing of Lung Resistance Related Protein (LRP) Gene
,”
J. Electroanal. Chem.
,
840
, pp.
165
173
. 10.1016/j.jelechem.2019.03.035
36.
Kafi
,
A. K. M.
,
Ahmadalinezhad
,
A.
,
Wang
,
J. P.
,
Thomas
,
D. F.
, and
Chen
,
A. C.
,
2010
, “
Direct Growth of Nanoporous Au and Its Application in Electrochemical Biosensing
,”
Biosens. Bioelectron.
,
25
(
11
), pp.
2458
2463
. 10.1016/j.bios.2010.04.006
37.
Qiu
,
H. J.
,
Xue
,
L. Y.
,
Ji
,
G. L.
,
Zhou
,
G. P.
,
Huang
,
X. R.
,
Qu
,
Y. B.
, and
Gao
,
P. J.
,
2009
, “
Enzyme-Modified Nanoporous Gold-Based Electrochemical Biosensors
,”
Biosens. Bioelectron.
,
24
(
10
), pp.
3014
3018
. 10.1016/j.bios.2009.03.011
38.
Biener
,
J.
,
Wittstock
,
A.
,
Zepeda-Ruiz
,
L. A.
,
Biener
,
M. M.
,
Zielasek
,
V.
,
Kramer
,
D.
,
Viswanath
,
R. N.
,
Weissmuller
,
J.
,
Baumer
,
M.
, and
Hamza
,
A. V.
,
2009
, “
Surface-Chemistry-Driven Actuation in Nanoporous Gold
,”
Nat. Mater.
,
8
(
1
), pp.
47
51
. 10.1038/nmat2335
39.
Xu
,
C.
,
Xu
,
X.
,
Su
,
J.
, and
Ding
,
Y.
,
2007
, “
Research on Unsupported Nanoporous Gold Catalyst for CO Oxidation
,”
J. Catal.
,
252
(
2
), pp.
243
248
. 10.1016/j.jcat.2007.09.016
40.
Graf
,
M.
,
Haensch
,
M.
,
Carstens
,
J.
,
Wittstock
,
G.
, and
Weissmuller
,
J.
,
2017
, “
Electrocatalytic Methanol Oxidation With Nanoporous Gold: Microstructure and Selectivity
,”
Nanoscale
,
9
(
45
), pp.
17839
17848
. 10.1039/C7NR05124G
41.
Yu
,
Y.
,
Gu
,
L.
,
Lang
,
X. Y.
,
Zhu
,
C. B.
,
Fujita
,
T.
,
Chen
,
M. W.
, and
Maier
,
J.
,
2011
, “
Li Storage in 3D Nanoporous Au-Supported Nanocrystalline Tin
,”
Adv. Mater.
,
23
(
21
), pp.
2443
2447
. 10.1002/adma.201004331
42.
Schofield
,
E. J.
,
Ingham
,
B.
,
Turnbull
,
A.
,
Toney
,
M. F.
, and
Ryan
,
M. P.
,
2008
, “
Strain Development in Nanoporous Metallic Foils Formed by Dealloying
,”
Appl. Phys. Lett.
,
92
(
4
), p.
043118
. 10.1063/1.2838351
43.
Dixon
,
M. C.
,
Daniel
,
T. A.
,
Hieda
,
M.
,
Smilgies
,
D. M.
,
Chan
,
M. H. W.
, and
Allara
,
D. L.
,
2007
, “
Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films
,”
Langmuir
,
23
(
5
), pp.
2414
2422
. 10.1021/la062313z
44.
Fujita
,
T.
,
Qian
,
L. H.
,
Inoke
,
K.
,
Erlebacher
,
J.
, and
Chen
,
M. W.
,
2008
, “
Three-Dimensional Morphology of Nanoporous Gold
,”
Appl. Phys. Lett.
,
92
(
25
), pp.
251902
. 10.1063/1.2948902
45.
Rosner
,
H.
,
Parida
,
S.
,
Kramer
,
D.
,
Volkert
,
C. A.
, and
Weissmuller
,
J.
,
2007
, “
Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
535
541
. 10.1002/adem.200700063
46.
Chen
,
Y. C. K.
,
Chu
,
Y. S.
,
Yi
,
J.
,
McNulty
,
I.
,
Shen
,
Q.
,
Voorhees
,
P. W.
, and
Dunand
,
D. C.
,
2010
, “
Morphological and Topological Analysis of Coarsened Nanoporous Gold by X-Ray Nanotomography
,”
Appl. Phys. Lett.
,
96
(
4
), p.
043122
. 10.1063/1.3285175
47.
Chen-Wiegart
,
Y. C. K.
,
Wang
,
S.
,
Lee
,
W. K.
,
McNulty
,
I.
,
Voorhees
,
P. W.
, and
Dunand
,
D. C.
,
2013
, “
In-Situ Imaging of Dealloying During Nanoporous Gold Formation by Transmission X-Ray Microscopy
,”
Acta Mater.
,
61
(
4
), pp.
1118
1125
. 10.1016/j.actamat.2012.10.017
48.
Chen-Wiegart
,
Y. C. K.
,
Wang
,
S.
,
McNulty
,
I.
, and
Dunand
,
D. C.
,
2013
, “
Effect of Ag–Au Composition and Acid Concentration on Dealloying Front Velocity and Cracking During Nanoporous Gold Formation
,”
Acta Mater.
,
61
(
15
), pp.
5561
5570
. 10.1016/j.actamat.2013.05.039
49.
Chen-Wiegart
,
Y. C. K.
,
Harder
,
R.
,
Dunand
,
D. C.
, and
McNulty
,
I.
,
2017
, “
Evolution of Dealloying Induced Strain in Nanoporous Gold Crystals
,”
Nanoscale
,
9
(
17
), pp.
5686
5693
. 10.1039/C6NR09635B
50.
Cha
,
W.
,
Liu
,
Y. H.
,
You
,
H.
,
Stephenson
,
G. B.
, and
Ulvestad
,
A.
,
2017
, “
Dealloying in Individual Nanoparticles and Thin Film Grains: A Bragg Coherent Diffractive Imaging Study
,”
Adv. Funct. Mater.
,
27
(
25
), p.
1700331
.
51.
Baier
,
S.
,
Damsgaard
,
C. D.
,
Scholz
,
M.
,
Benzi
,
F.
,
Rochet
,
A.
,
Hoppe
,
R.
,
Scherer
,
T.
,
Shi
,
J. J.
,
Wittstock
,
A.
,
Weinhausen
,
B.
,
Wagner
,
J. B.
,
Schroer
,
C. G.
, and
Grunwaldt
,
J. D.
,
2016
, “
In Situ Ptychography of Heterogeneous Catalysts Using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature
,”
Microsc. Microanal.
,
22
(
1
), pp.
178
188
. 10.1017/S1431927615015573
52.
Fam
,
Y.
,
Sheppard
,
T. L.
,
Diaz
,
A.
,
Scherer
,
T.
,
Holler
,
M.
,
Wang
,
W.
,
Wang
,
D.
,
Brenner
,
P.
,
Wittstock
,
A.
, and
Grunwaldt
,
J. D.
,
2018
, “
Correlative Multiscale 3D Imaging of a Hierarchical Nanoporous Gold Catalyst by Electron, Ion and X-Ray Nanotomography
,”
Chemcatchem
,
10
(
13
), pp.
2858
2867
. 10.1002/cctc.201800230
53.
Abbey
,
B.
,
Nugent
,
K. A.
,
Williams
,
G. J.
,
Clark
,
J. N.
,
Peele
,
A. G.
,
Pfeifer
,
M. A.
,
De Jonge
,
M.
, and
McNulty
,
I.
,
2008
, “
Keyhole Coherent Diffractive Imaging
,”
Nat. Phys.
,
4
(
5
), pp.
394
398
. 10.1038/nphys896
54.
Putkunz
,
C. T.
,
Pfeifer
,
M. A.
,
Peele
,
A. G.
,
Williams
,
G. J.
,
Quiney
,
H. M.
,
Abbey
,
B.
,
Nugent
,
K. A.
, and
McNulty
,
I.
,
2010
, “
Fresnel Coherent Diffraction Tomography
,”
Opt. Express
,
18
(
11
), pp.
11746
11753
. 10.1364/OE.18.011746
55.
McNulty
,
I.
,
Khounsary
,
A.
,
Feng
,
Y. P.
,
Qian
,
Y.
,
Barraza
,
J.
,
Benson
,
C.
, and
Shu
,
D.
,
1996
, “
A Beamline for 1–4 keV Microscopy and Coherence Experiments at the Advanced Photon Source
,”
Rev. Sci. Instrum.
,
67
(
9
), p.
3372
. 10.1063/1.1147339
56.
Kim
,
S.
,
Chen
,
Y. K.
,
Putkunz
,
C. T.
,
Dunand
,
D. C.
, and
McNulty
,
I.
,
2010
, “
Use of justified constraints in coherent diffractive imaging
,”
10th International Conference on X-ray Microscopy
,
Chicago, IL
,
Aug. 15–20
, pp.
441
444
.
57.
Williams
,
G. J.
,
Quiney
,
H. M.
,
Dhal
,
B. B.
,
Tran
,
C. Q.
,
Nugent
,
K. A.
,
Peele
,
A. G.
,
Paterson
,
D.
, and
de Jonge
,
M. D.
,
2006
, “
Fresnel Coherent Diffractive Imaging
,”
Phys. Rev. Lett.
,
97
(
2
), p.
025506
. 10.1103/PhysRevLett.97.025506
58.
Natterer
,
F.
,
1986
,
The Mathematics of Computerized Tomography
,
Vieweg + Teubner Verlag
,
Weinheim
.
You do not currently have access to this content.