Abstract

Promoting the hole extraction from the photocathode semiconductor is crucial to not only enhance the charge separation and suppress the charge recombination but also to protect the oxidation of the photocathode semiconductor by the photogenerated holes. Here, we use a very thin MoO3 film as a hole buffer layer between conductive substrate fluorine-doped tin oxide and the p-type semiconductor CuBi2O4. Through comprehensive photoelectrochemical characterizations, we find that the insertion of a hole buffer layer MoO3 not only accelerates the hole traction from the CuBi2O4 photocathode but also blocks the backward transfer of photogenerated electrons. This optimized charge transfer behavior contributes to the improved photoelectrochemical performance. Based on our results, some interesting designs on CuBi2O4 photocathode are given at the end that will be potentially working as effective photocathodes.

References

References
1.
Lewis
,
N. S.
,
2016
, “
Research Opportunities to Advance Solar Energy Utilization
,”
Science
,
351
(
6271
), p.
aad1920
. 10.1126/science.aad1920
2.
Li
,
J.
, and
Wu
,
N.
,
2015
, “
Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review
,”
Catal. Sci. Technol.
,
5
(
3
), pp.
1360
1384
. 10.1039/C4CY00974F
3.
Lee
,
D.
,
Lee
,
D.
,
Lumley
,
M. A.
, and
Choi
,
K.
,
2019
, “
Progress on Ternary Oxide-Based Photoanodes for Use in Photoelectrochemical Cells for Solar Water Splitting
,”
Chem. Soc. Rev.
,
48
(
7
), pp.
2126
2157
. 10.1039/C8CS00761F
4.
Li
,
J.
,
Cushing
,
S.
,
Zheng
,
P.
,
Meng
,
F.
,
Chu
,
D.
, and
Wu
,
N.
,
2013
, “
Plasmon-Induced Photonic and Energy-Transfer Enhancement of Solar Water Splitting by a Hematite Nanorod Array
,”
Nat. Commun.
,
4
(
1
), p.
2651
. 10.1038/ncomms3651
5.
Chen
,
X.
,
Liu
,
L.
,
Yu
,
P.
, and
Mao
,
S.
,
2011
, “
Increasing Solar Absorption for Photocatalysis With Black Hydrogenated Titanium Dioxide Nanocrystals
,”
Science
,
331
(
6018
), pp.
746
750
. 10.1126/science.1200448
6.
Kim
,
T. W.
, and
Choi
,
K.
,
2014
, “
Nanoporous BiVO4 Photoanodes With Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
,”
Science
,
343
(
6174
), pp.
990
994
. 10.1126/science.1246913
7.
Li
,
J.
,
Meng
,
F.
,
Suri
,
S.
,
Ding
,
W.
,
Huang
,
F.
, and
Wu
,
N.
,
2012
, “
Photoelectrochemical Performance Enhanced by a Nickel Oxide-Hematite p–n Junction Photoanode
,”
Chem. Commun.
,
48
(
66
), pp.
8213
8215
. 10.1039/c2cc30376k
8.
Nakata
,
K.
, and
Fujishima
,
A.
,
2012
, “
TiO2 Photocatalysis: Design and Applications
,”
J. Photochem. Photobiol. C: Photochem. Rev.
,
13
(
3
), pp.
169
189
. 10.1016/j.jphotochemrev.2012.06.001
9.
Huang
,
Q.
,
Ye
,
Z.
, and
Xiao
,
X.
,
2015
, “
Recent Progress in Photocathodes for Hydrogen Evolution
,”
J. Mater. Chem. A
,
3
(
31
), pp.
15824
15837
. 10.1039/C5TA03594E
10.
Bagal
,
I. V.
,
Chodankar
,
N. R.
,
Hassan
,
M. A.
,
Waseem
,
A.
,
Johar
,
M. A.
,
Kim
,
D.
, and
Ryu
,
S.
,
2019
, “
Cu2O as an Emerging Photocathode for Solar Water Splitting—A Status Review
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
21351
21378
. 10.1016/j.ijhydene.2019.06.184
11.
Chen
,
Q.
,
Fan
,
G.
,
Fu
,
H.
,
Li
,
Z.
, and
Zou
,
Z.
,
2018
, “
Tandem Photoelectrochemical Cells for Solar Water Splitting
,”
Adv. Phys. X
,
3
(
1
), p.
1487267
.
12.
Li
,
J.
,
Griep
,
M.
,
Choi
,
Y. S.
, and
Chu
,
D.
,
2018
, “
Photoelectrochemical Overall Water Splitting With Textured CuBi2O4 as a Photocathode
,”
Chem. Commun.
,
54
(
27
), pp.
3331
3334
. 10.1039/C7CC09041B
13.
Berglund
,
S.
,
Abdi
,
F.
,
Bogdanoff
,
P.
,
Chemseddine
,
A.
,
Friedrich
,
D.
, and
van de Krol
,
R.
,
2016
, “
Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting
,”
Chem. Mater.
,
28
(
12
), pp.
4231
4242
. 10.1021/acs.chemmater.6b00830
14.
Zhu
,
L.
,
Basnet
,
P.
,
Larson
,
S.
,
Jones
,
L.
,
Howe
,
J. Y.
,
Tripp
,
R.
, and
Zhao
,
Y.
,
2016
, “
Visible Light-Induced Photoelectrochemical and Antimicrobial Properties of Hierarchical CuBi2O4 by Facile Hydrothermal Synthesis
,”
Chem. Sel.
,
1
(
8
), pp.
1518
1524
. 10.1002/slct.201600164
15.
Read
,
C. G.
,
Park
,
Y.
, and
Choi
,
K.
,
2012
, “
Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell
,”
J. Phys. Chem. Lett.
,
3
(
14
), pp.
1872
1876
. 10.1021/jz300709t
16.
Kang
,
D.
,
Hill
,
J. C.
,
Park
,
Y.
, and
Choi
,
K.
,
2016
, “
Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes
,”
Chem. Mater.
,
28
(
12
), pp.
4331
4340
. 10.1021/acs.chemmater.6b01294
17.
Cao
,
D.
,
Nasori
,
N.
,
Wang
,
Z.
,
Mi
,
Y.
,
Wen
,
L.
,
Yang
,
Y.
,
Qu
,
S.
,
Wang
,
Z.
, and
Lei
,
Y.
,
2016
, “
p-Type CuBi2O4: An Easily Accessible Photocathodic Material for High-Efficiency Water Splitting
,”
J. Mater. Chem. A
,
4
(
23
), pp.
8995
9001
. 10.1039/C6TA01234E
18.
Wang
,
F.
,
Chemseddine
,
A.
,
Abdi
,
F.
,
van de Krol
,
R.
, and
Berglund
,
S.
,
2017
, “
Spray Pyrolysis of CuBi2O4 Photocathodes: Improved Solution Chemistry for Highly Homogeneous Thin Films
,”
J. Mater. Chem. A
,
5
(
25
), pp.
12838
12847
. 10.1039/C7TA03009F
19.
Song
,
A.
,
Plate
,
P.
,
Chemseddine
,
A.
,
Wang
,
F.
,
Abdi
,
F. F.
,
Wollgarten
,
M.
,
van de Krol
,
R.
, and
Berglund
,
S. P.
,
2019
, “
Cu:NiO as a Hole-Selective Back Contact to Improve the Photoelectrochemical Performance of CuBi2O4 Thin Film Photocathodes
,”
J. Mater. Chem. A
,
7
(
15
), pp.
9183
9194
. 10.1039/C9TA01489F
20.
Sullivan
,
I.
,
Zoellner
,
B.
, and
Maggard
,
P. A.
,
2016
, “
Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion
,”
Chem. Mater.
,
28
(
17
), pp.
5999
6016
. 10.1021/acs.chemmater.6b00926
21.
Sharma
,
G.
,
Zhao
,
Z.
,
Sarker
,
P.
,
Nail
,
B. A.
,
Wang
,
J.
,
Huda
,
M. N.
, and
Osterloh
,
F. E.
,
2016
, “
Electronic Structure, Photovoltage, and Photocatalytic Hydrogen Evolution With p-CuBi2O4 Nanocrystals
,”
J. Mater. Chem. A
,
4
(
8
), pp.
2936
2942
. 10.1039/C5TA07040F
22.
Wang
,
F.
,
Septina
,
W.
,
Chemseddine
,
A.
,
Abdi
,
F. F.
,
Friedrich
,
D.
,
Bogdanoff
,
P.
,
van de Krol
,
R.
,
Tilley
,
S. D.
, and
Berglund
,
S. P.
,
2017
, “
Gradient Self-Doped CuBi2O4 With Highly Improved Charge Separation Efficiency
,”
J. Am. Chem. Soc.
,
139
(
42
), pp.
15094
15103
. 10.1021/jacs.7b07847
23.
Lee
,
J.
,
Yoon
,
H.
,
Kim
,
S.
,
Seo
,
S.
,
Song
,
J.
,
Choi
,
B.
,
Choi
,
S. Y.
,
Park
,
H.
,
Ryu
,
S.
,
Oh
,
J.
, and
Lee
,
S.
,
2019
, “
Long-Term Stabilized High-Density CuBi2O4/NiO Heterostructure Thin Film Photocathode Grown by Pulsed Laser Deposition
,”
Chem. Commun.
,
55
(
83),
pp.
12447
12450
. 10.1039/C9CC06092H
24.
Shrotriya
,
V.
,
Li
,
G.
,
Yao
,
Y.
,
Chu
,
C.
, and
Yang
,
Y.
,
2006
, “
Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells
,”
Appl. Phys. Lett.
,
88
(
7
), p.
073508
. 10.1063/1.2174093
25.
Hori
,
T.
,
Moritou
,
H.
,
Fukuoka
,
N.
,
Sakamoto
,
J.
,
Fujii
,
A.
, and
Ozaki
,
M.
,
2010
, “
Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers
,”
Materials
,
3
(
11
), pp.
4915
4921
. 10.3390/ma3114915
26.
Lee
,
J.
,
Pak
,
S.
,
Giraud
,
P.
,
Lee
,
Y.
,
Cho
,
Y.
,
Hong
,
J.
,
Jang
,
A.
,
Chung
,
H.
,
Hong
,
W.
,
Jeong
,
H. Y.
,
Shin
,
H. S.
,
Occhipinti
,
L. G.
,
Morris
,
S. M.
,
Cha
,
S.
,
Sohn
,
J.
, and
Kim
,
J. M.
,
2017
, “
Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and Their Unipolar n–n Heterojunction Devices
,”
Adv. Mater.
,
29
(
33
), p.
1702206
. 10.1002/adma.201702206
27.
Liu
,
J.
,
Wu
,
X.
,
Chen
,
S.
,
Shi
,
X.
,
Wang
,
J.
,
Huang
,
S.
,
Guo
,
X.
, and
He
,
G.
,
2014
, “
Low-Temperature MoO3 Film From a Facile Synthetic Route for an Efficient Anode Interfacial Layer in Organic Optoelectronic Devices
,”
J. Mater. Chem. C
,
2
(
1
), pp.
158
163
. 10.1039/C3TC31580K
28.
Xie
,
F.
,
Choy
,
W. C. H.
,
Wang
,
C.
,
Li
,
X.
,
Zhang
,
S.
, and
Hou
,
J.
,
2013
, “
Low-Temperature Solution-Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Hole-Transport Layer in Organic Electronics
,”
Adv. Mater.
,
25
(
14
), pp.
2051
2055
. 10.1002/adma.201204425
29.
White
,
R. T.
,
Thibau
,
E. S.
, and
Lu
,
Z.
,
2016
, “
Interface Structure of MoO3 on Organic Semiconductors
,”
Sci. Rep.
,
6
(
1
), p.
21109
. 10.1038/srep21109
30.
Li
,
J.
,
Chu
,
D.
,
Baker
,
D. R.
,
Dong
,
H.
,
Jiang
,
R.
, and
Tran
,
D. T.
,
2019
, “
Distorted Inverse Spinel Nickel Cobaltite Grown on a MoS2 Plate for Significantly Improved Water Splitting Activity
,”
Chem. Mater.
,
31
(
18
), pp.
7590
7600
. 10.1021/acs.chemmater.9b02397
31.
Tafalla
,
D.
,
Salvador
,
P.
, and
Benito
,
R. M.
,
1990
, “
Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at n-TiO2 Electrodes II. Analysis of the Photocurrent-Time Dependence
,”
J. Electrochem. Soc.
,
137
(
6
), pp.
1810
1815
. 10.1149/1.2086809
32.
Hossain
,
M. K.
,
Samu
,
G. F.
,
Gandha
,
K.
,
Santhanagopalan
,
S.
,
Ping Liu
,
J.
,
Janáky
,
C.
, and
Rajeshwar
,
K.
,
2017
, “
Solution Combustion Synthesis, Characterization, and Photocatalytic Activity of CuBi2O4 and Its Nanocomposites With CuO and α-Bi2O3
,”
J. Phys. Chem. C
,
121
(
15
), pp.
8252
8261
. 10.1021/acs.jpcc.6b13093
33.
Choi
,
Y.-H.
,
Yang
,
K. D.
,
Kim
,
D.-H.
,
Nam
,
K. T.
, and
Hong
,
S.-H.
,
2017
, “
p-Type CuBi2O4 Thin Films Prepared by Flux-Mediated One-Pot Solution Process With Improved Structural and Photoelectrochemical Characteristics
,”
Mater. Lett.
,
188
(
1
), pp.
192
196
. 10.1016/j.matlet.2016.10.124
34.
Xu
,
Y.
,
Jian
,
J.
,
Li
,
F.
,
Liu
,
W.
,
Jia
,
L.
, and
Wang
,
H.
,
2019
, “
Porous CuBi2O4 Photocathodes With Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance
,”
J. Mater. Chem. A
,
7
(
38
), pp.
21997
22004
. 10.1039/C9TA07892D
35.
Shah
,
A. K.
,
Sahu
,
T. K.
,
Banik
,
A.
,
Gogoi
,
D.
,
Peela
,
N. R.
, and
Qureshi
,
M.
,
2019
, “
Reduced Graphene Oxide Modified CuBi2O4 as an Efficient and Noble Metal Free Photocathode for Superior Photoelectrochemical Hydrogen Production
,”
Sustain. Energy Fuels
,
3
(
6
), pp.
1554
1561
. 10.1039/C9SE00129H
36.
Lai
,
Y.
,
Lin
,
K.
,
Yen
,
C.
, and
Jiang
,
B.
,
2019
, “
A Tandem Photoelectrochemical Water Splitting Cell Consisting of CuBi2O4 and BiVO4 Synthesized From a Single Bi4O5I2 Nanosheet Template
,”
Faraday Discuss.
,
215
, pp.
297
312
. 10.1039/C8FD00183A
37.
Lee
,
W.
,
Kang
,
J.
,
Park
,
H. S.
,
Nam
,
K. M.
, and
Cho
,
S. K.
,
2019
, “
Photoelectrochemical Response of Au-Decorated CuBi2O4 Photocathode in Bicarbonate Solution
,”
J. Electroanal. Chem.
,
838
, pp.
172
177
. 10.1016/j.jelechem.2019.02.055
38.
Kim
,
N.
,
Choi
,
B.
,
Yu
,
H.
,
Ryu
,
S.
, and
Oh
,
J.
,
2019
, “
Formation of High-Density CuBi2O4 Thin Film Photocathodes With Polyvinylpyrrolidone-Metal Interaction
,”
Opt. Express
,
27
(
4
), pp.
A171
A183
. 10.1364/OE.27.00A171
39.
Zhao
,
L.
,
Wang
,
X.
, and
Liu
,
Z.
,
2018
, “
Efficient Photoelectrochemical Performances of the Novel Honeycomb Network-Like CuBi2O4 Films
,”
Appl. Phys. A
,
124
(
12
), p.
836
. 10.1007/s00339-018-2262-5
40.
Zhang
,
Z.
,
Lindley
,
S. A.
,
Dhall
,
R.
,
Bustillo
,
K.
,
Han
,
W.
,
Xie
,
E.
, and
Cooper
,
J. K.
,
2019
, “
Beneficial CuO Phase Segregation in the Ternary p-Type Oxide Photocathode CuBi2O4
,”
ACS Appl. Energy Mater.
,
2
(
6
), pp.
4111
4117
. 10.1021/acsaem.9b00297
41.
Li
,
J.
,
Cushing
,
S.
,
Chu
,
D.
, and
Wu
,
N.
,
2016
, “
Distinguishing Surface Effects of Gold Nanoparticles From Plasmonic Effect on Photoelectrochemical Water Splitting by Hematite
,”
J. Mater. Res.
,
31
(
11
), pp.
1608
1615
. 10.1557/jmr.2016.102
42.
Klahr
,
B.
,
Gimenez
,
S.
,
Fabregat-Santiago
,
F.
,
Bisquert
,
J.
, and
Hamann
,
T. W.
,
2012
, “
Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation With “Co–Pi”-Coated Hematite Electrodes
,”
J. Am. Chem. Soc.
,
134
(
40
), pp.
16693
16700
. 10.1021/ja306427f
43.
Yu
,
F.
,
Li
,
F.
,
Yao
,
T.
,
Du
,
J.
,
Liang
,
Y.
,
Wang
,
Y.
,
Han
,
H.
, and
Sun
,
L.
,
2017
, “
Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode
,”
ACS Catal.
,
7
(
3
), pp.
1868
1874
. 10.1021/acscatal.6b03483
44.
Klahr
,
B.
,
Gimenez
,
S.
,
Fabregat-Santiago
,
F.
,
Hamann
,
T.
, and
Bisquert
,
J.
,
2012
, “
Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
,”
J. Am. Chem. Soc.
,
134
(
9
), pp.
4294
4302
. 10.1021/ja210755h
You do not currently have access to this content.