Abstract

This review outlines the approaches and mechanisms through which peptides and amino acids functionalize electrocatalytically active surfaces to promote or inhibit the electrochemical hydrogen evolution reaction (HER). HER is important in many electrochemical systems. For example, HER is highly desired in water electrolysis, which if driven by renewable energy could serve as a green alternative to the fossil-fuel-driven steam methane-reforming process. However, HER is often an undesired side reaction and thus limits the selectivity of promising electrochemical technologies such as electrochemical nitrogen reduction or carbon dioxide reduction. In pursuing higher product selectivity and yield in emerging and existing electrochemical systems, amino acids and short-chain peptides are promising molecules for the modification of electrochemically active surfaces. Peptides are attractive because they are highly tunable, which allows for versatility in their applications. This short review article summarizes literature that illustrates the mechanisms through which electrode-bound peptides can affect HER including via modulating surface binding and adsorbate coverage, altering the surface composition, and controlling proton transfer rates. Our goal is to motivate additional studies utilizing electrode-bound peptides to modulate electrochemical hydrogen evolution reactions.

References

References
1.
Deyab
,
M. A.
,
2015
, “
Hydrogen Evolution Inhibition by l-Serine at the Negative Electrode of a Lead–Acid Battery
,”
RSC Adv.
,
5
(
52
), pp.
41365
41371
. 10.1039/C5RA05044H
2.
Foster
,
S. L.
,
Bakovic
,
S. I. P.
,
Duda
,
R. D.
,
Maheshwari
,
S.
,
Milton
,
R. D.
,
Minteer
,
S. D.
,
Janik
,
M. J.
,
Renner
,
J. N.
, and
Greenlee
,
L. F.
,
2018
, “
Catalysts for Nitrogen Reduction to Ammonia
,”
Nat. Catal.
,
1
(
7
), pp.
490
500
. 10.1038/s41929-018-0092-7
3.
Zhang
,
Y.-J.
,
Sethuraman
,
V.
,
Michalsky
,
R.
, and
Peterson
,
A. A.
,
2014
, “
Competition Between CO2 Reduction and H2 Evolution on Transition-Metal Electrocatalysts
,”
ACS Catal.
,
4
(
10
), pp.
3742
3748
. 10.1021/cs5012298
4.
Strmcnik
,
D.
,
Lopes
,
P. P.
,
Genorio
,
B.
,
Stamenkovic
,
V. R.
, and
Markovic
,
N. M.
,
2016
, “
Design Principles for Hydrogen Evolution Reaction Catalyst Materials
,”
Nano Energy
,
29
, pp.
29
36
. 10.1016/j.nanoen.2016.04.017
5.
Li
,
Y. J.
,
Whyburn
,
G. P.
, and
Huang
,
Y.
,
2009
, “
Specific Peptide Regulated Synthesis of Ultrasmall Platinum Nanocrystals
,”
J. Am. Chem. Soc.
,
131
(
44
), p.
15998
15999
. 10.1021/ja907235v
6.
Zong
,
J. Y.
,
Cobb
,
S. L.
, and
Cameron
,
N. R.
,
2017
, “
Peptide-Functionalized Gold Nanoparticles: Versatile Biomaterials for Diagnostic and Therapeutic Applications
,”
Biomater. Sci.
,
5
(
5
), pp.
872
886
. 10.1039/C7BM00006E
7.
Nasar
,
A.
, and
Perveen
,
R.
,
2019
, “
Applications of Enzymatic Biofuel Cells in Bioelectronic Devices—A Review
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15287
15312
. 10.1016/j.ijhydene.2019.04.182
8.
Kornienko
,
N.
,
Ly
,
K. H.
,
Robinson
,
W. E.
,
Heidary
,
N.
,
Zhang
,
J. Z.
, and
Reisner
,
E.
,
2019
, “
Advancing Techniques for Investigating the Enzyme-Electrode Interface
,”
Acc. Chem. Res.
,
52
(
5
), pp.
1439
1448
. 10.1021/acs.accounts.9b00087
9.
Mijalis
,
A. J.
,
Thomas
,
D. A.
, 3rd
,
Simon
,
M. D.
,
Adamo
,
A.
,
Beaumont
,
R.
,
Jensen
,
K. F.
, and
Pentelute
,
B. L.
,
2017
, “
A Fully Automated Flow-Based Approach for Accelerated Peptide Synthesis
,”
Nat. Chem. Biol.
,
13
(
5
), pp.
464
466
. 10.1038/nchembio.2318
10.
Wang
,
W.
,
Anderson
,
C. F.
,
Wang
,
Z. Y.
,
Wu
,
W.
,
Cui
,
H. G.
, and
Liu
,
C. J.
,
2017
, “
Peptide-Templated Noble Metal Catalysts: Syntheses and Applications
,”
Chem. Sci.
,
8
(
5
), pp.
3310
3324
. 10.1039/C7SC00069C
11.
Walsh
,
T. R.
, and
Knecht
,
M. R.
,
2017
, “
Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials
,”
Chem. Rev.
,
117
(
20
), pp.
12641
12704
. 10.1021/acs.chemrev.7b00139
12.
Bedford
,
N. M.
,
Ramezani-Dakhel
,
H.
,
Slocik
,
J. M.
,
Briggs
,
B. D.
,
Ren
,
Y.
,
Frenkel
,
A. I.
,
Heinz
,
H.
,
Petkov
,
V. G.
,
Naik
,
R. R.
, and
Knecht
,
M. R.
,
2015
, “
Elucidation of Peptide-Directed Palladium Surface Structure for Biologically-Tunable Nanocatalysts
,”
ACS Nano
,
9
(
5
), pp.
5082
5092
. 10.1021/acsnano.5b00168
13.
Lawrence
,
R. L.
,
Scola
,
B.
,
Li
,
Y.
,
Lim
,
C. K.
,
Liu
,
Y.
,
Prasad
,
P. N.
,
Swihart
,
M. T.
, and
Knecht
,
M. R.
,
2016
, “
Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles Through Reconfiguration of the Inorganic/Organic Interface
,”
ACS Nano
,
10
(
10
), pp.
9470
9477
. 10.1021/acsnano.6b04555
14.
Coppage
,
R.
,
Slocik
,
J. M.
,
Ramezani-Dakhel
,
H.
,
Bedford
,
N. M.
,
Heinz
,
H.
,
Naik
,
R. R.
, and
Knecht
,
M. R.
,
2013
, “
Exploiting Localized Surface Binding Effects to Enhance the Catalytic Reactivity of Peptide-Capped Nanoparticles
,”
J. Am. Chem. Soc.
,
135
(
30
), p.
11048
11054
. 10.1021/ja402215t
15.
Bedford
,
N. M.
,
Hughes
,
Z. E.
,
Tang
,
Z. H.
,
Li
,
Y.
,
Briggs
,
B. D.
,
Ren
,
Y.
,
Swihart
,
M. T.
,
Petkov
,
V. G.
,
Naik
,
R. R.
,
Knecht
,
M. R.
, and
Walsh
,
T. R.
,
2016
, “
Sequence-Dependent Structure/Function Relationships, of Catalytic Peptide-Enabled Gold Nanoparticles Generated Under Ambient Synthetic Conditions
,”
J. Am. Chem. Soc.
,
138
(
2
), pp.
540
548
. 10.1021/jacs.5b09529
16.
Yang
,
H.
,
Tang
,
Z.
,
Yan
,
W.
,
Wang
,
L.
,
Wang
,
Q.
,
Zhang
,
Y.
,
Liu
,
Z.
, and
Chen
,
S.
,
2017
, “
Peptide Capped Pd Nanoparticles for Oxygen Electroreduction: Strong Surface Effects
,”
J. Alloys Compd.
,
702
, pp.
146
152
. 10.1016/j.jallcom.2017.01.199
17.
Parsons
,
R.
,
1958
, “
The Rate of Electrocatalytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen
,”
Trans. Faraday Soc.
,
54
(
3
), pp.
1053
1063
. 10.1039/tf9585401053
18.
Santos
,
E.
,
Hindelang
,
P.
,
Quaino
,
P.
,
Schulz
,
E. N.
,
Soldano
,
G.
, and
Schmickler
,
W.
,
2011
, “
Hydrogen Electrocatalysis on Single Crystals and on Nanostructured Electrodes
,”
Chem. Phys. Chem.
,
12
(
12
), pp.
2274
2279
. 10.1002/cphc.201100309
19.
Skulason
,
E.
,
Tripkovic
,
V.
,
Bjorketun
,
M.
,
Gudmundsdottir
,
S.
,
Karlberg
,
G.
,
Rossmeisl
,
J.
,
Bligaard
,
T.
,
Jonsson
,
H.
, and
Nørskov
,
J.
,
2010
, “
Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
,”
J. Phys. Chem. C
,
114
(
42
), pp.
18182
18197
. 10.1021/jp1048887
20.
Lindgren
,
P.
,
Kastlunger
,
G.
, and
Peterson
,
A.
,
2020
, “
A Challenge to the G ~ 0 Interpretation of Hydrogen Evolution
,”
ACS Catal.
,
10
(
1
), pp.
121
128
.
21.
Shinagawa
,
T.
,
Garcia-Esparza
,
A. T.
, and
Takanabe
,
K.
,
2015
, “
Insight on Tafel Slopes From a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion
,”
Sci. Rep.
,
5
(
1
), p.
13801
. 10.1038/srep13801
22.
Compton
,
R. G.
, and
Banks
,
C. E.
,
2007
,
Understanding Voltammetry
,
World Scientific
,
Singapore
.
23.
McCrum
,
I. T.
,
Hickner
,
M. A.
, and
Janik
,
M. J.
,
2018
, “
Quaternary Ammonium Cation Specific Adsorption on Platinum Electrodes: A Combined Experimental and Density Functional Theory Study
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
F114
F121
. 10.1149/2.1351802jes
24.
Tang
,
Q.
, and
Jiang
,
D.-e.
,
2016
, “
Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 From First Principles
,”
ACS Catal.
,
6
(
8
), pp.
4953
4961
. 10.1021/acscatal.6b01211
25.
Conway
,
B. E.
, and
Tilak
,
B. V.
,
2002
, “
Interfacial Processes Involving Electrocatalytic Evolution Andoxidation of H2, and the Role of Chemisorbed H
,”
Electrochim. Acta
,
47
(
22–23
), pp.
3571
3594
. 10.1016/S0013-4686(02)00329-8
26.
Amin
,
M. A.
,
Khaled
,
K. F.
,
Mohsen
,
Q.
, and
Arida
,
H. A.
,
2010
, “
A Study of the Inhibition of Iron Corrosion in HCl Solutions by Some Amino Acids
,”
Corros. Sci.
,
52
(
5
), pp.
1684
1695
. 10.1016/j.corsci.2010.01.019
27.
Park
,
E. J.
, and
Kim
,
Y. S.
,
2018
, “
Quaternized Aryl Ether-Free Polyaromatics for Alkaline Membrane Fuel Cells: Synthesis, Properties, and Performance—A Topical Review
,”
J. Mater. Chem. A
,
6
(
32
), pp.
15456
15477
. 10.1039/C8TA05428B
28.
Srivastava
,
S. K.
,
del Río
,
J. S.
,
O'Sullivan
,
C. K.
,
Ogino
,
C.
, and
Kondo
,
A.
,
2014
, “
Electro-Catalytically Active Au@Pt Nanoparticles for Hydrogen Evolution Reaction: An Insight Into a Tryptophan Mediated Supramolecular Interface Towards a Universal Core–Shell Synthesis Approach
,”
RSC Adv.
,
4
(
89
), pp.
48458
48464
. 10.1039/C4RA08365B
29.
Xie
,
M. S.
,
Xia
,
B. Y.
,
Li
,
Y.
,
Yan
,
Y.
,
Yang
,
Y.
,
Sun
,
Q.
,
Chan
,
S. H.
,
Fisher
,
A.
, and
Wang
,
X.
,
2016
, “
Amino Acid Modified Copper Electrodes for the Enhanced Selective Electroreduction of Carbon Dioxide Towards Hydrocarbons
,”
Energy Environ. Sci.
,
9
(
5
), pp.
1687
1695
. 10.1039/C5EE03694A
30.
Tse
,
E. C. M.
,
Barile
,
C. J.
,
Kirchschlager
,
N. A.
,
Li
,
Y.
,
Gewargis
,
J. P.
,
Zimmerman
,
S. C.
,
Hosseini
,
A.
, and
Gewirth
,
A. A.
,
2016
, “
Proton Transfer Dynamics Control the Mechanism of O2 Reduction by a Non-Precious Metal Electrocatalyst
,”
Nat. Mater.
,
15
(
7
), pp.
754
759
. 10.1038/nmat4636
31.
Jackson
,
M. N.
, and
Surendranath
,
Y.
,
2016
, “
Donor-Dependent Kinetics of Interfacial Proton-Coupled Electron Transfer
,”
J. Am. Chem. Soc.
,
138
(
9
), pp.
3228
3234
. 10.1021/jacs.6b00167
32.
Lerner Yardeni
,
J.
,
Amit
,
M.
,
Ashkenasy
,
G.
, and
Ashkenasy
,
N.
,
2016
, “
Sequence Dependent Proton Conduction in Self-Assembled Peptide Nanostructures
,”
Nanoscale
,
8
(
4
), pp.
2358
2366
. 10.1039/C5NR06750B
33.
Kusoglu
,
A.
,
2019
,
Fuel Cells and Hydrogen Production
,
Springer
,
New York
.
34.
Paul
,
D. K.
,
Fraser
,
A.
,
Pearce
,
J.
, and
Karan
,
K.
,
2011
, “
Understanding the Ionomer Structure and the Proton Conduction Mechanism in PEFC Catalyst Layer: Adsorbed Nafion on Model Substrate
,”
ECS Trans.
,
41
(
1
), pp.
1393
1406
. 10.1149/1.3635670
35.
Kodama
,
K.
,
Jinnouchi
,
R.
,
Suzuki
,
T.
,
Murata
,
H.
,
Hatanaka
,
T.
, and
Morimoto
,
Y.
,
2013
, “
Increase in Adsorptivity of Sulfonate Anions on Pt (111) Surface With Drying of Ionomer
,”
Electrochem. Commun.
,
36
, pp.
26
28
. 10.1016/j.elecom.2013.09.005
36.
Ogata
,
Y.
,
Abe
,
T.
,
Yonemori
,
S.
,
Yamada
,
N. L.
,
Kawaguchi
,
D.
, and
Tanaka
,
K.
,
2018
, “
Impact of the Solid Interface on Proton Conductivity in Nafion Thin Films
,”
Langmuir
,
34
(
50
), pp.
15483
15489
. 10.1021/acs.langmuir.8b03396
37.
Ono
,
Y.
, and
Nagao
,
Y.
,
2016
, “
Interfacial Structure and Proton Conductivity of Nafion at the Pt-Deposited Surface
,”
Langmuir
,
32
(
1
), pp.
352
358
. 10.1021/acs.langmuir.5b02623
38.
Kushner
,
D. I.
,
Kusoglu
,
A.
,
Podraza
,
N. J.
, and
Hickner
,
M. A.
,
2019
, “
Substrate-Dependent Molecular and Nanostructural Orientation of Nafion Thin Films
,”
Adv. Funct. Mater.
,
29
(
37
), p.
1902699
. 10.1002/adfm.201902699
39.
Tesfaye
,
M.
,
Kushner
,
D. I.
,
McCloskey
,
B. D.
,
Weber
,
A. Z.
, and
Kusoglu
,
A.
,
2018
, “
Thermal Transitions in Perfluorosulfonated Ionomer Thin-Films
,”
ACS Macro Lett.
,
7
(
10
), pp.
1237
1242
. 10.1021/acsmacrolett.8b00628
40.
Paul
,
D. K.
,
Shim
,
H. K. K.
,
Giorgi
,
J. B.
, and
Karan
,
K.
,
2016
, “
Thickness Dependence of Thermally Induced Changes in Surface and Bulk Properties of Nafion® Nanofilms
,”
J. Polym. Sci., Part B: Polym. Phys.
,
54
(
13
), pp.
1267
1277
. 10.1002/polb.24034
41.
Min
,
T.
,
Gao
,
Y.
, and
Tao
,
W.
,
2019
, “
Pore-Scale Study of Gas Transport in Catalyst Layers of PEMFCs
,”
Energy Procedia
,
158
, pp.
1479
1484
. 10.1016/j.egypro.2019.01.353
42.
Berlinger
,
S. A.
,
McCloskey
,
B. D.
, and
Weber
,
A. Z.
,
2018
, “
Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation
,”
J. Phys. Chem. B
,
122
(
31
), pp.
7790
7796
. 10.1021/acs.jpcb.8b06493
43.
Borges
,
D. D.
,
Gebel
,
G.
,
Franco
,
A. A.
,
Malek
,
K.
, and
Mossa
,
S.
,
2015
, “
Morphology of Supported Polymer Electrolyte Ultra-Thin Films: A Numerical Study
,”
J. Phys. Chem. C
,
119
(
2
), pp.
1201
1216.
44.
Ngo
,
T. T.
,
Yu
,
T. L.
, and
Lin
,
H.-L.
,
2013
, “
Influence of the Composition of Isopropyl Alcohol/Water Mixture Solvents in Catalyst Ink Solutions on Proton Exchange Membrane Fuel Cell Performance
,”
J. Power Sources
,
225
, pp.
293
303
. 10.1016/j.jpowsour.2012.10.055
45.
Malek
,
K.
,
Eikerling
,
M.
,
Wang
,
Q.
,
Navessin
,
T.
, and
Liu
,
Z.
,
2007
, “
Self-Organization in Catalyst Layers of Polymer Electrolyte Fuel Cells
,”
J. Phys. Chem. C
,
111
(
36
), pp.
13627
13634
. 10.1021/jp072692k
46.
Su
,
Z.
,
Pramounmat
,
N.
,
Watson
,
S. T.
, and
Renner
,
J. N.
,
2018
, “
Engineered Interaction Between Short Elastin-Like Peptides and Perfluorinated Sulfonic-Acid Ionomer
,”
Soft Matter
,
14
(
18
), pp.
3528
3535
. 10.1039/C8SM00351C
47.
Su
,
Z.
,
Kole
,
S.
,
Harden
,
L. C.
,
Palakkal
,
V. M.
,
Kim
,
C.
,
Nair
,
G.
,
Arges
,
C. G.
, and
Renner
,
J. N.
,
2019
, “
Peptide-Modified Electrode Surfaces for Promoting Anion Exchange Ionomer Microphase Separation and Ionic Conductivity
,”
ACS Mater. Lett.
,
1
(
4),
pp.
467
475
. 10.1021/acsmaterialslett.9b00173
48.
Pramounmat
,
N.
,
Loney
,
C. N.
,
Kim
,
C.
,
Wiles
,
L.
,
Ayers
,
K. E.
,
Kusoglu
,
A.
, and
Renner
,
J. N.
,
2019
, “
Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer With Elastin-Like Polypeptide
,”
ACS Appl. Mater. Interfaces
,
11
(
46
), pp.
43649
43658
. 10.1021/acsami.9b11160
49.
Liu
,
Y.
,
Hickey
,
D. P.
,
Guo
,
J.-Y.
,
Earl
,
E.
,
Abdellaoui
,
S.
,
Milton
,
R. D.
,
Sigman
,
M. S.
,
Minteer
,
S. D.
, and
Calabrese Barton
,
S.
,
2017
, “
Substrate Channeling in an Artificial Metabolon: A Molecular Dynamics Blueprint for an Experimental Peptide Bridge
,”
ACS Catal.
,
7
(
4
), pp.
2486
2493
. 10.1021/acscatal.6b03440
50.
Morra
,
S.
,
Giraudo
,
A.
,
Di Nardo
,
G.
,
King
,
P. W.
,
Gilardi
,
G.
, and
Valetti
,
F.
,
2012
, “
Site Saturation Mutagenesis Demonstrates a Central Role for Cysteine 298 as Proton Donor to the Catalytic Site in CaHydA [FeFe]-Hydrogenase
,”
PLoS One
,
7
(
10
), p.
e48400
. 10.1371/journal.pone.0048400
51.
Liu
,
P.
, and
Rodriguez
,
J.
,
2005
, “
Catalysts for Hydrogen Evolution From the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect
,”
J. Am. Chem. Soc.
,
127
(
42
), pp.
14871
14878
. 10.1021/ja0540019
52.
Hambourger
,
M.
,
Gervaldo
,
M.
,
Svedruzic
,
D.
,
King
,
P.
,
Gust
,
D.
,
Ghirardi
,
M.
,
Moore
,
A.
, and
Moore
,
T.
,
2008
, “
[FeFe]-Hydrogenase-Catalyzed H2 Production in a Photoelectrochemical Biofuel Cell
,”
J. Am. Chem. Soc.
,
130
(
6
), pp.
2015
2022
. 10.1021/ja077691k
53.
Shah
,
A.
,
Adhikari
,
B.
,
Martic
,
S.
,
Munir
,
A.
,
Shahzad
,
S.
,
Ahmad
,
K.
, and
Kraatz
,
H. B.
,
2015
, “
Electron Transfer in Peptides
,”
Chem. Soc. Rev.
,
44
(
4
), pp.
1015
1027
. 10.1039/C4CS00297K
54.
Amit
,
M.
,
Cheng
,
G.
,
Hamley
,
I. W.
, and
Ashkenasy
,
N.
,
2012
, “
Conductance of Amyloid β Based Peptide Filaments: Structure–Function Relations
,”
Soft Matter
,
8
(
33
), p.
8690
. 10.1039/c2sm26017d
55.
Renner
,
J. N.
, and
Minteer
,
S. D.
,
2016
, “
The Use of Engineered Protein Materials in Electrochemical Devices
,”
Exp. Biol. Med.
,
241
(
9
), pp.
980
985
. 10.1177/1535370216647127
56.
Sakala
,
G. P.
, and
Reches
,
M.
,
2018
, “
Peptide-Based Approaches to Fight Biofouling
,”
Adv. Mater. Interfaces
,
5
(
18
), p.
1800073
. 10.1002/admi.201800073
57.
Radjenovic
,
J.
, and
Sedlak
,
D. L.
,
2015
, “
Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water
,”
Environ. Sci. Technol.
,
49
(
19
), pp.
11292
11302
. 10.1021/acs.est.5b02414
58.
Paleček
,
E.
,
Tkáč
,
J.
,
Bartošík
,
M.
,
Bertók
,
T.
,
Ostatná
,
V.
, and
Paleček
,
J.
,
2015
, “
Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics
,”
Chem. Rev.
,
115
(
5
), pp.
2045
2108
. 10.1021/cr500279h
59.
Dourado
,
A. H. B.
,
Pastrian
,
F. C.
, and
Torresi
,
S. I. C.
,
2018
, “
The Long and Successful Journey of Electrochemically Active Amino Acids. From Fundamental Adsorption Studies to Potential Surface Engineering Tools
,”
An. Acad. Bras. Cienc.
,
90
(
1 Suppl 1
), pp.
607
630
. 10.1590/0001-3765201720170434
You do not currently have access to this content.