Abstract

Platinum supported on carbon support (Pt/C) is currently the most common and practicable electrocatalyst for the real application of polymer electrolyte membrane fuel cells (PEMFCs). In this work, it was found that the nature of a reducing agent has noteworthy influence on Pt nanoparticles growth and distribution over acid-treated-Vulcan carbon support (Pt/AT-VC), which was employed to catalyze the oxygen reduction reaction (ORR) for PEMFC. Three distinct reducing agents, i.e., sodium borohydride (BH), sodium citrate (CA), and formaldehyde (FMY), were employed for Pt/AT-VC preparation through the impregnation-reduction approach. The impacts of the reducing agent on Pt nanoparticles size and its distribution over carbon support were scrutinized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) techniques. The electrocatalytic performance for ORR was subsequently studied by a three-electrode setup with rotating ring-disc electrode (RRDE) characterization and practical fuel cell operation. The ORR kinetics and mechanism were confirmed from RRDE, and it was well correlated with the durability test and single-cell results. Based on the results, the catalysts’ performances for practical PEMFC can be arranged in the order of Pt/AT-VC (BH) < Pt/AT-VC (CA) < Pt/AT-VC (FMY), implying the significance of selecting the reducing agent for the preparation of Pt/C for PEMFC real application.

References

1.
Aiyejina
,
A.
, and
Sastry
,
M.
,
2012
, “
PEMFC Flow Channel Geometry Optimization: A Review
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011011
. 10.1115/1.4005393
2.
Xu
,
Q.
,
Zhang
,
F.
,
Xu
,
L.
,
Leung
,
P.
,
Yang
,
C.
, and
Li
,
H.
,
2017
, “
The Applications and Prospect of Fuel Cells in Medical Field: A Review
,”
Renew. Sust. Energ. Rev.
,
67
(
0
), pp.
574
580
. 10.1016/j.rser.2016.09.042
3.
Xing
,
L.
,
Shi
,
W.
,
Su
,
H.
,
Xu
,
Q.
,
Das
,
P. K.
,
Mao
,
B.
, and
Scott
,
K.
,
2019
, “
Membrane Electrode Assemblies for PEM Fuel Cells: A Review of Functional Graded Design and Optimization
,”
Energy
,
177
(
0
), pp.
445
464
. 10.1016/j.energy.2019.04.084
4.
Chen
,
Y.
, and
Shi
,
J.
,
2015
, “
The Synthesis of High-Dispersed Ni/Pt/C Nano-Electrocatalysts for Oxygen Reduction Reaction
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
2
), p.
021005
. 10.1115/1.4028149
5.
Narayanamoorthy
,
B.
,
Datta
,
K.
, and
Balaji
,
S.
,
2012
, “
Kinetics and Mechanism of Electrochemical Oxygen Reduction Using Platinum/Clay/Nafion Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells
,”
J. Colloid Interface Sci.
,
387
(
1
), pp.
213
220
. 10.1016/j.jcis.2012.08.002
6.
Yan
,
Z.
,
Gao
,
L.
,
Dai
,
C.
,
Zhang
,
M.
,
Lv
,
X.
, and
Shen
,
P. K.
,
2018
, “
Metal-Free Mesoporous Carbon with Higher Contents of Active N and S Codoping by Template Method for Superior ORR Efficiency to Pt/C
,”
Int. J. Hydrogen Energy
,
43
(
7
), pp.
3705
3715
. 10.1016/j.ijhydene.2018.01.013
7.
Tong
,
X.
,
Zhang
,
J. M.
,
Zhang
,
G. X.
,
Wei
,
Q. L.
,
Chenitz
,
R.
,
Claverie
,
J. P.
, and
Sun
,
S. H.
,
2017
, “
Ultrathin Carbon-Coated Pt/Carbon Nanotubes: A Highly Durable Electrocatalyst for Oxygen Reduction
,”
Chem. Mater.
,
29
(
21
), pp.
9579
9587
. 10.1021/acs.chemmater.7b04221
8.
Zhou
,
Y. Z.
,
Yang
,
J.
,
Zhu
,
C. Z.
,
Du
,
D.
,
Cheng
,
X. N.
,
Yen
,
C. H.
,
Wai
,
C. M.
, and
Lin
,
Y. H.
,
2016
, “
Newly Designed Graphene Cellular Monolith Functionalized With Hollow Pt-M (M=Ni, Co) Nanoparticles as the Electrocatalyst for Oxygen Reduction Reaction
,”
ACS Appl. Mater. Interfaces
,
8
(
39
), pp.
25863
25874
. 10.1021/acsami.6b04963
9.
Wang
,
Y.-J.
,
Zhao
,
N.
,
Fang
,
B.
,
Li
,
H.
,
Bi
,
X. T.
, and
Wang
,
H.
,
2015
, “
Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity
,”
Chem. Rev.
,
115
(
9
), pp.
3433
3467
. 10.1021/cr500519c
10.
Marinoiu
,
A.
,
Raceanu
,
M.
,
Carcadea
,
E.
,
Varlam
,
M.
,
Balan
,
D.
,
Ion-Ebrasu
,
D.
,
Stefanescu
,
I.
, and
Enachescu
,
M.
,
2017
, “
Iodine-Doped Graphene for Enhanced Electrocatalytic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications
,”
ASME J. Electrochem. En. Conv. Stor.
,
14
(
3
), pp.
031001–
031009
. 10.1115/1.4036684
11.
Shao
,
M.
,
Peles
,
A.
, and
Shoemaker
,
K.
,
2011
, “
Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity
,”
Nano Lett.
,
11
(
9
), pp.
3714
3719
. 10.1021/nl2017459
12.
Weththasinha
,
H. A. B. M. D.
,
Yan
,
Z.
,
Gao
,
L.
,
Li
,
Y.
,
Pan
,
D.
,
Zhang
,
M.
,
Lv
,
X.
,
Wei
,
W.
, and
Xie
,
J.
,
2017
, “
Nitrogen Doped Lotus Stem Carbon as Electrocatalyst Comparable to Pt/C for Oxygen Reduction Reaction in Alkaline Media
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20560
20567
. 10.1016/j.ijhydene.2017.06.011
13.
Senthil Kumar
,
S. M.
,
Soler Herrero
,
J.
,
Irusta
,
S.
, and
Scott
,
K.
,
2010
, “
The Effect of Pretreatment of Vulcan XC-72R Carbon on Morphology and Electrochemical Oxygen Reduction Kinetics of Supported Pd Nano-Particle in Acidic Electrolyte
,”
J. Electroanal. Chem.
,
647
(
2
), pp.
211
221
. 10.1016/j.jelechem.2010.05.021
14.
Shuihua
,
T.
,
Gongquan
,
S.
,
Jing
,
Q.
,
Shiguo
,
S.
,
Junsong
,
G.
,
Qin
,
X.
, and
Haarberg
,
G. M.
,
2010
, “
Review of New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells
,”
Chin. J. Catal.
,
31
(
1
), pp.
12
17
. 10.1016/S1872-2067(09)60034-6
15.
Lemus
,
J.
,
Bedia
,
J.
,
Calvo
,
L.
,
Simakova
,
I.
,
Murzin
,
D. Y.
,
Etzold
,
B.
,
Rodriguez
,
J.
, and
Gilarranz
,
M.
,
2016
, “
Improved Synthesis and Hydrothermal Stability of Pt/C Catalysts Based on Size-Controlled Nanoparticles
,”
Catal. Sci. Technol.
,
6
(
13
), pp.
5196
5206
. 10.1039/C6CY00403B
16.
Oluigbo
,
C. J.
,
Xie
,
M.
,
Ullah
,
N.
,
Yang
,
S.
,
Zhao
,
W.
,
Zhang
,
M.
,
Lv
,
X.
,
Xu
,
Y.
, and
Xie
,
J.
,
2019
, “
Novel One-Step Synthesis of Nickel Encapsulated Carbon Nanotubes as Efficient Electrocatalyst for Hydrogen Evolution Reaction
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
2685
2693
. 10.1016/j.ijhydene.2018.11.215
17.
Zhou
,
Y. Z.
,
Zhu
,
C. Z.
,
Yang
,
G. H.
,
Du
,
D.
,
Cheng
,
X. N.
,
Yang
,
J.
, and
Lin
,
Y. H.
,
2018
, “
Embedding Platinum-Based Nanoparticles Within Ordered Mesoporous Carbon Using Supercritical Carbon Dioxide Technique as a Highly Efficient Oxygen Reduction Electrocatalyst
,”
J. Alloys Compd.
,
741
, pp.
580
589
. 10.1016/j.jallcom.2018.01.053
18.
Fang
,
B.
,
Chaudhari
,
N. K.
,
Kim
,
M.-S.
,
Kim
,
J. H.
and
Yu
,
J.-S.
,
2009
, “
Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell
,”
J. Am. Chem. Soc.
,
131
(
42
), pp.
15330
15338
. 10.1021/ja905749e
19.
Nagasawa
,
K.
,
Takao
,
S.
,
Higashi
,
K.
,
Nagamatsu
,
S.-I.
,
Samjeské
,
G.
,
Imaizumi
,
Y.
,
Sekizawa
,
O.
,
Yamamoto
,
T.
,
Uruga
,
T.
, and
Iwasawa
,
Y.
,
2014
, “
Performance and Durability of Pt/C Cathode Catalysts With Different Kinds of Carbons for Polymer Electrolyte Fuel Cells Characterized by Electrochemical and In Situ XAFS Techniques
,”
Phys. Chem. Chem. Phys.
,
16
(
21
), pp.
10075
10087
. 10.1039/c3cp54457e
20.
Gupta
,
C.
,
Maheshwari
,
P. H.
,
Sasikala
,
S.
, and
Mathur
,
R.
,
2014
, “
Processing of Pristine Carbon Nanotube Supported Platinum as Catalyst for PEM Fuel Cell
,”
Mater. Renew. Sustain. Energy
,
3
(
4
), p.
36
. 10.1007/s40243-014-0036-3
21.
Ma
,
H.-C.
,
Xue
,
X.-Z.
,
Liao
,
J.-H.
,
Liu
,
C.-P.
, and
Xing
,
W.
,
2006
, “
Effect of Borohydride as Reducing Agent on the Structures and Electrochemical Properties of Pt/C Catalyst
,”
Appl. Surf. Sci.
,
252
(
24
), pp.
8593
8597
. 10.1016/j.apsusc.2005.11.089
22.
Kumar
,
P. R.
,
Suryawanshi
,
P. L.
,
Gumfekar
,
S. P.
,
Bhanvase
,
B. A.
, and
Sonawane
,
S.
,
2018
, “
Sonochemical Synthesis of Pt-Co/C Electrocatalyst for PEM Fuel Cell Applications
,”
Surf. Interfaces
,
12
(
2
), pp.
116
123
. 10.1016/j.surfin.2018.04.002
23.
Liu
,
Z.
,
Gan
,
L. M.
,
Hong
,
L.
,
Chen
,
W.
, and
Lee
,
J. Y.
,
2005
, “
Carbon-Supported Pt Nanoparticles as Catalysts for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
139
(
1–2
), pp.
73
78
. 10.1016/j.jpowsour.2004.07.012
24.
Calderón
,
J. C.
,
Ndzuzo
,
L.
,
Bladergroen
,
B. J.
, and
Pasupathi
,
S.
,
2018
, “
Oxygen Reduction Reaction on Pt-Pd Catalysts Supported on Carbon Xerogels: Effect of the Synthesis Method
,”
Int. J. Hydrogen Energy
,
43
(
35
), pp.
16881
16896
. 10.1016/j.ijhydene.2017.12.182
25.
Zhang
,
C.
,
Hwang
,
S. Y.
,
Trout
,
A.
, and
Peng
,
Z.
,
2014
, “
Solid-State Chemistry-Enabled Scalable Production of Octahedral Pt–Ni Alloy Electrocatalyst for Oxygen Reduction Reaction
,”
J. Am. Chem. Soc.
,
136
(
22
), pp.
7805
7808
. 10.1021/ja501293x
26.
Lv
,
J.-J.
,
Zheng
,
J.-N.
,
Li
,
S.-S.
,
Chen
,
L.-L.
,
Wang
,
A.-J.
, and
Feng
,
J.-J.
,
2014
, “
Facile Synthesis of Pt–Pd Nanodendrites and Their Superior Electrocatalytic Activity
,”
J. Mater. Chem. A
,
2
(
12
), pp.
4384
4390
. 10.1039/C3TA14304J
27.
Hueso
,
J. L.
,
Sebastián
,
V.
,
Mayoral
,
Á
,
Usón
,
L.
,
Arruebo
,
M.
, and
Santamaría
,
J.
,
2013
, “
Beyond Gold: Rediscovering Tetrakis-(Hydroxymethyl)-Phosphonium Chloride (THPC) as an Effective Agent for the Synthesis of Ultra-Small Noble Metal Nanoparticles and Pt-Containing Nanoalloys
,”
RSC Adv.
,
3
(
26
), pp.
10427
10433
. 10.1039/c3ra40774h
28.
Zeng
,
J.
,
Lee
,
J. Y.
, and
Zhou
,
W.
,
2006
, “
Activities of Pt/C Catalysts Prepared by Low Temperature Chemical Reduction Methods
,”
Appl. Catal. A
,
308
(
1
), pp.
99
104
. 10.1016/j.apcata.2006.04.019
29.
Holade
,
Y.
,
Sahin
,
N.
,
Servat
,
K.
,
Napporn
,
T.
, and
Kokoh
,
K.
,
2015
, “
Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells
,”
Catalysts
,
5
(
1
), pp.
310
348
. 10.3390/catal5010310
30.
Shao
,
Y.
,
Yin
,
G.
, and
Gao
,
Y.
,
2007
, “
Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell
,”
J. Power Sources
,
171
(
2
), pp.
558
566
. 10.1016/j.jpowsour.2007.07.004
31.
Yuan
,
X.-Z.
,
Li
,
H.
,
Zhang
,
S.
,
Martin
,
J.
, and
Wang
,
H.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cell Durability Test Protocols
,”
J. Power Sources
,
196
(
22
), pp.
9107
9116
. 10.1016/j.jpowsour.2011.07.082
32.
Zhong
,
R.-S.
,
Qin
,
Y.-H.
,
Niu
,
D.-F.
,
Zhang
,
X.-S.
,
Zhou
,
X.-G.
,
Sun
,
S.-G.
, and
Yuan
,
W.-K.
,
2013
, “
Effect of Carbon Nanofiber Surface Groups on Oxygen Reduction Reaction of Supported Pt Electrocatalyst
,”
Electrochim. Acta
,
89
(
1
), pp.
157
162
. 10.1016/j.electacta.2012.11.007
33.
Calderón
,
J.
,
García
,
G.
,
Calvillo
,
L.
,
Rodríguez
,
J.
,
Lázaro
,
M.
, and
Pastor
,
E.
,
2015
, “
Electrochemical Oxidation of CO and Methanol on Pt–Ru Catalysts Supported on Carbon Nanofibers: The Influence of Synthesis Method
,”
Appl. Catal. B
,
165
(
1
), pp.
676
686
. 10.1016/j.apcatb.2014.10.077
34.
Santos
,
L.
,
Freitas
,
K.
, and
Ticianelli
,
E.
,
2009
, “
Heat Treatment Effect of Pt–V/C and Pt/C on the Kinetics of the Oxygen Reduction Reaction in Acid Media
,”
Electrochim. Acta
,
54
(
22
), pp.
5246
5251
. 10.1016/j.electacta.2009.03.078
35.
Narayanamoorthy
,
B.
,
Linkov
,
V.
,
Sita
,
C.
, and
Pasupathi
,
S.
,
2016
, “
Pt 3 M (M: Co, Ni and Fe) Bimetallic Alloy Nanoclusters as Support-Free Electrocatalysts With Improved Activity and Durability for Dioxygen Reduction in PEM Fuel Cells
,”
Electrocatalysis
,
7
(
5
), pp.
400
410
. 10.1007/s12678-016-0318-x
36.
Holade
,
Y.
,
Morais
,
C.
,
Servat
,
K.
,
Napporn
,
T. W.
, and
Kokoh
,
K. B.
,
2014
, “
Enhancing the Available Specific Surface Area of Carbon Supports to Boost the Electroactivity of Nanostructured Pt Catalysts
,”
Phys. Chem. Chem. Phys.
,
16
(
46
), pp.
25609
25620
. 10.1039/C4CP03851G
37.
Leontyev
,
I. N.
,
Leontyeva
,
D. V.
,
Kuriganova
,
A. B.
,
Popov
,
Y. V.
,
Maslova
,
O. A.
,
Glebova
,
N. V.
,
Nechitailov
,
A. A.
,
Zelenina
,
N. K.
,
Tomasov
,
A. A.
,
Hennet
,
L.
, and
Smirnova
,
N. V.
,
2015
, “
Characterization of the Electrocatalytic Activity of Carbon-Supported Platinum-Based Catalysts by Thermal Gravimetric Analysis
,”
Mendeleev Commun.
,
25
(
6
), pp.
468
469
. 10.1016/j.mencom.2015.11.024
38.
Pimenta
,
M.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M. S.
,
Cançado
,
L.
,
Jorio
,
A.
, and
Saito
,
R.
,
2007
, “
Studying Disorder in Graphite-Based Systems by Raman Spectroscopy
,”
Phys. Chem. Chem. Phys.
,
9
(
11
), pp.
1276
1290
. 10.1039/B613962K
39.
Hosseini
,
M.
, and
Mahmoodi
,
R.
,
2017
, “
The Comparison of Direct Borohydride-Hydrogen Peroxide Fuel Cell Performance With Membrane Electrode Assembly Prepared by Catalyst Coated Membrane Method and Catalyst Coated Gas Diffusion Layer Method Using Ni@Pt/C as Anodic Catalyst
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10363
10375
. 10.1016/j.ijhydene.2017.02.022
40.
Shao
,
Y.
,
Yin
,
G.
,
Wang
,
J.
,
Gao
,
Y.
, and
Shi
,
P.
,
2006
, “
Multi-Walled Carbon Nanotubes Based Pt Electrodes Prepared With In Situ Ion Exchange Method for Oxygen Reduction
,”
J. Power Sources
,
161
(
1
), pp.
47
53
. 10.1016/j.jpowsour.2006.03.064
41.
Shao
,
Y.
,
Yin
,
G.
,
Gao
,
Y.
, and
Shi
,
P.
,
2006
, “
Durability Study of Pt∕C and Pt∕CNTs Catalysts Under Simulated PEM Fuel Cell Conditions
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1093
A1097
. 10.1149/1.2191147
42.
Jiang
,
Q.-L.
,
Peng
,
Z.-D.
,
Xie
,
X.-F.
,
Du
,
K.
,
Hu
,
G.-R.
, and
Liu
,
Y.-X.
,
2011
, “
Preparation of High Active Pt/C Cathode Electrocatalyst for Direct Methanol Fuel Cell by Citrate-Stabilized Method
,”
Trans. Nonferrous Met. Soc. China
,
21
(
1
), pp.
127
132
. 10.1016/S1003-6326(11)60688-2
43.
Zhu
,
C.
,
Li
,
H.
,
Fu
,
S.
,
Du
,
D.
, and
Lin
,
Y.
,
2016
, “
Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures
,”
Chem. Soc. Rev.
,
45
(
3
), pp.
517
531
. 10.1039/C5CS00670H
44.
Wu
,
J.
, and
Yang
,
H.
,
2013
, “
Platinum-Based Oxygen Reduction Electrocatalysts
,”
Acc. Chem. Res.
,
46
(
8
), pp.
1848
1857
. 10.1021/ar300359w
45.
Bian
,
T.
,
Liu
,
H.
,
Sun
,
B.
,
Xiao
,
B.
,
Jiang
,
Y.
,
Jin
,
C.
,
Yuan
,
A.
,
Zhang
,
H.
, and
Yang
,
D.
,
2019
, “
Ion-Templated Fabrication of Pt–Cu Alloy Octahedra With Controlled Compositions for Electrochemical Detection of H2O2
,”
J. Alloys Compd.
,
788
(
2
), pp.
1334
1340
. 10.1016/j.jallcom.2019.02.195
46.
Chandran
,
P.
,
Ghosh
,
A.
, and
Ramaprabhu
,
S.
,
2018
, “
High-Performance Platinum-Free Oxygen Reduction Reaction and Hydrogen Oxidation Reaction Catalyst in Polymer Electrolyte Membrane Fuel Cell
,”
Sci. Rep.
,
8
(
1
), p.
3591
. 10.1038/s41598-018-22001-9
47.
Qaseem
,
A.
,
Chen
,
F.
,
Wu
,
X.
, and
Johnston
,
R. L.
,
2016
, “
Pt-Free Silver Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media
,”
Catal. Sci. Technol.
,
6
(
10
), pp.
3317
3340
. 10.1039/C5CY02270C
48.
Morales-Acosta
,
D.
,
de la Fuente
,
D. L.
,
Arriaga
,
L.
,
Gutiérrez
,
G. V.
, and
Varela
,
F. R.
,
2011
, “
Electrochemical Investigation of Pt-Co/MWCNT as an Alcohol-Tolerant ORR Catalyst for Direct Oxidation Fuel Cells
,”
Int. J. Electrochem. Sci
,
6
(
1
), pp.
1835
1854
.
49.
Wang
,
J. X.
,
Uribe
,
F. A.
,
Springer
,
T. E.
,
Zhang
,
J.
, and
Adzic
,
R. R.
,
2009
, “
Intrinsic Kinetic Equation for Oxygen Reduction Reaction in Acidic Media: The Double Tafel Slope and Fuel Cell Applications
,”
Faraday Discuss.
,
140
(
1
), pp.
347
362
. 10.1039/B802218F
50.
Chiwata
,
M.
,
Kakinuma
,
K.
,
Wakisaka
,
M.
,
Uchida
,
M.
,
Deki
,
S.
,
Watanabe
,
M.
, and
Uchida
,
H.
,
2015
, “
Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide
,”
Catalysts
,
5
(
2
), pp.
966
980
. 10.3390/catal5020966
51.
Li
,
W.
, and
Haldar
,
P.
,
2010
, “
Highly Active Carbon Supported Core-Shell PtNi@Pt Nanoparticles for Oxygen Reduction Reaction
,”
Electrochem. Solid-State Lett.
,
13
(
5
), pp.
B47
B49
. 10.1149/1.3313347
52.
Zhao
,
Y.
,
Chu
,
Y.
,
Ju
,
X.
,
Zhao
,
J.
,
Kong
,
L.
, and
Zhang
,
Y.
,
2018
, “
Carbon-Supported Copper-Based Nitrogen-Containing Supramolecule as an Efficient Oxygen Reduction Reaction Catalyst in Neutral Medium
,”
Catalysts
,
8
(
2
), p.
53
. 10.3390/catal8020053
53.
Muthukrishnan
,
A.
,
Nabae
,
Y.
,
Okajima
,
T.
, and
Ohsaka
,
T.
,
2015
, “
Kinetic Approach to Investigate the Mechanistic Pathways of Oxygen Reduction Reaction on Fe-Containing N-Doped Carbon Catalysts
,”
ACS Catal.
,
5
(
9
), pp.
5194
5202
. 10.1021/acscatal.5b00397
54.
Meier
,
J. C.
,
Galeano
,
C.
,
Katsounaros
,
I.
,
Topalov
,
A. A.
,
Kostka
,
A.
,
Schüth
,
F.
, and
Mayrhofer
,
K. J.
,
2012
, “
Degradation Mechanisms of Pt/C Fuel Cell Catalysts Under Simulated Start–Stop Conditions
,”
ACS Catal.
,
2
(
5
), pp.
832
843
. 10.1021/cs300024h
55.
Bharti
,
A.
,
Cheruvally
,
G.
, and
Muliankeezhu
,
S.
,
2017
, “
Microwave Assisted, Facile Synthesis of Pt/CNT Catalyst for Proton Exchange Membrane Fuel Cell Application
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11622
11631
. 10.1016/j.ijhydene.2017.02.109
56.
Kim
,
T.
,
Takahashi
,
M.
,
Nagai
,
M.
, and
Kobayashi
,
K.
,
2004
, “
Preparation and Characterization of Carbon Supported Pt and PtRu Alloy Catalysts Reduced by Alcohol for Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
,
50
(
2–3
), pp.
817
821
. 10.1016/j.electacta.2004.01.124
You do not currently have access to this content.