Abstract

In order to develop a non-precious metal-based catalyst, Bi–Co–S nanorods were prepared by a simple solvothermal method. The morphology and composition were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDXS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and chronoamperometry were used to study the electrochemical oxidation of glucose in alkaline medium. Bi–Co–S nanorods with different ratio of Bi/Co were modified on the electrode and their electrocatalytic activities were compared. The results showed that Bi–Co–S nanorods with the 1:2 ratio of Bi/Co exhibited the lowest initial potential and the highest catalytic current. In addition, Bi–Co–S nanorods showed long-term durability. The introduction of Co significantly improves the catalytic activity of the catalyst, and the excellent performance of Bi–Co–S nanorods may be due to the synergy between the two sulfides.

References

1.
Siwal
,
S. S.
,
Thakur
,
S.
,
Zhang
,
Q. B.
, and
Thakur
,
V. K.
,
2019
, “
Electrocatalysts for Electrooxidation of Direct Alcohol Fuel Cell: Chemistry and Applications
,”
Mater. Today Chem.
,
14
, p.
100182
. 10.1016/j.mtchem.2019.06.004
2.
Pan
,
Z.
,
Bi
,
Y.
, and
An
,
L.
,
2019
, “
Performance Characteristics of a Passive Direct Ethylene Glycol Fuel Cell With Hydrogen Peroxide as Oxidant
,”
Appl. Energy
,
250
, pp.
846
854
. 10.1016/j.apenergy.2019.05.072
3.
Xia
,
Z.
,
Zhang
,
X.
,
Sun
,
H.
,
Wang
,
S.
, and
Sun
,
G.
,
2019
, “
Recent Advances in Multi-Scale Design and Construction of Materials for Direct Methanol Fuel Cells
,”
Nano Energy
,
65
, p.
104048
. 10.1016/j.nanoen.2019.104048
4.
Darowicki
,
K.
,
Janicka
,
E.
,
Mielniczek
,
M.
,
Zielinski
,
A.
,
Gawel
,
L.
,
Mitzel
,
J.
, and
Hunger
,
J.
,
2019
, “
The Influence of Dynamic Load Changes on Temporary Impedance in Hydrogen Fuel Cells, Selection and Validation of the Electrical Equivalent Circuit
,”
Appl. Energy
,
251
, p.
113396
. 10.1016/j.apenergy.2019.113396
5.
Zhang
,
D.
,
Wang
,
Y.
,
Wang
,
Y.
,
Zhang
,
Y.
, and
Song
,
X.-M.
,
2020
, “
Fe2O3/NiO Photocathode for Photocatalytic Methanol Fuel Cell: An Insight on Solar Energy Conversion
,”
J. Alloys Compd.
,
815
, p.
152377
. 10.1016/j.jallcom.2019.152377
6.
Gao
,
M.
,
Liu
,
X.
,
Irfan
,
M.
,
Shi
,
J.
,
Wang
,
X.
, and
Zhang
,
P.
,
2018
, “
Nickle-Cobalt Composite Catalyst-Modified Activated Carbon Anode for Direct Glucose Alkaline Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1805
1815
. 10.1016/j.ijhydene.2017.11.114
7.
Liu
,
Y.
, and
Li
,
H.
,
2019
, “
Enhancing Conversion From Glucose to Electricity by Ferric Chloride in a Redox Flow Fuel Cell
,”
Energy
,
189
, p.
116171
. 10.1016/j.energy.2019.116171
8.
Escalona-Villalpando
,
R. A.
,
Dector
,
A.
,
Dector
,
D.
,
Moreno-Zuria
,
A.
,
Durón-Torres
,
S. M.
,
Galván-Valencia
,
M.
,
Arriaga
,
L. G.
, and
Ledesma-Garcia
,
J.
,
2016
, “
Glucose Microfluidic Fuel Cell Using Air as Oxidant
,”
Int. J. Hydrogen Energy
,
41
(
48
), pp.
23394
23400
. 10.1016/j.ijhydene.2016.04.238
9.
Basu
,
D.
, and
Basu
,
S.
,
2010
, “
A Study on Direct Glucose and Fructose Alkaline Fuel Cell
,”
Electrochim. Acta
,
55
(
20
), pp.
5775
5779
. 10.1016/j.electacta.2010.05.016
10.
Basu
,
D.
, and
Basu
,
S.
,
2012
, “
Performance Studies of Pd–Pt and Pt–Pd–Au Catalyst for Electro-Oxidation of Glucose in Direct Glucose Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
5
), pp.
4678
4684
. 10.1016/j.ijhydene.2011.04.158
11.
Zhu
,
Z.
, and
Zhang
,
Y. H. P.
,
2017
, “
In Vitro Metabolic Engineering of Bioelectricity Generation by the Complete Oxidation of Glucose
,”
Metab. Eng.
,
39
, pp.
110
116
. 10.1016/j.ymben.2016.11.002
12.
Megías-Sayago
,
C.
,
Santos
,
J. L.
,
Ammari
,
F.
,
Chenouf
,
M.
,
Ivanova
,
S.
,
Centeno
,
M. A.
, and
Odriozola
,
J. A.
,
2018
, “
Influence of Gold Particle Size in Au/C Catalysts for Base-Free Oxidation of Glucose
,”
Catal. Today
,
306
, pp.
183
190
. 10.1016/j.cattod.2017.01.007
13.
Zhao
,
W.
,
Zhang
,
R.
,
Xu
,
S.
,
Cai
,
J.
,
Zhu
,
X.
,
Zhu
,
Y.
,
Wei
,
W.
,
Liu
,
X.
, and
Luo
,
J.
,
2018
, “
Molecularly Imprinted Polymeric Nanoparticles Decorated With Au NPs for Highly Sensitive and Selective Glucose Detection
,”
Biosens. Bioelectron.
,
100
, pp.
497
503
. 10.1016/j.bios.2017.09.020
14.
Wang
,
C.-H.
,
Lee
,
S.-W.
,
Tseng
,
C.-J.
,
Wu
,
J.-W.
,
Hung
,
I. M.
,
Tseng
,
C.-M.
, and
Chang
,
J.-K.
,
2014
, “
Nanocrystalline Pd/Carbon Nanotube Composites Synthesized Using Supercritical Fluid for Superior Glucose Sensing Performance
,”
J. Alloys Compd.
,
615
, pp.
S496
S500
. 10.1016/j.jallcom.2013.12.187
15.
Basu
,
D.
,
Sood
,
S.
, and
Basu
,
S.
,
2013
, “
Performance Comparison of Pt–Au/C and Pt–Bi/C Anode Catalysts in Batch and Continuous Direct Glucose Alkaline Fuel Cell
,”
Chem. Eng. J.
,
228
, pp.
867
870
. 10.1016/j.cej.2013.05.049
16.
Basu
,
D.
, and
Basu
,
S.
,
2011
, “
Synthesis and Characterization of Pt–Au/C Catalyst for Glucose Electro-Oxidation for the Application in Direct Glucose Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
22
), pp.
14923
14929
. 10.1016/j.ijhydene.2011.03.042
17.
Đurđić
,
S.
,
Vukojević
,
V.
,
Vlahović
,
F.
,
Ognjanović
,
M.
,
Švorc
,
Ľ.
,
Kalcher
,
K.
,
Mutić
,
J.
, and
Stanković
,
D. M.
,
2019
, “
Application of Bismuth (III) Oxide Decorated Graphene Nanoribbons for Enzymatic Glucose Biosensing
,”
J. Electroanal. Chem.
,
850
, p.
113400
. 10.1016/j.jelechem.2019.113400
18.
Gopalan
,
A. I.
,
Muthuchamy
,
N.
, and
Lee
,
K. P.
,
2017
, “
A Novel Bismuth Oxychloride-Graphene Hybrid Nanosheets Based Non-Enzymatic Photoelectrochemical Glucose Sensing Platform for High Performances
,”
Biosens. Bioelectron.
,
89
, pp.
352
360
. 10.1016/j.bios.2016.07.017
19.
Wenkin
,
M.
,
Ruiz
,
P.
,
Delmon
,
B.
, and
Devillers
,
M.
,
2002
, “
The Role of Bismuth as Promoter in Pd–Bi Catalysts for the Selective Oxidation of Glucose to Gluconate
,”
J. Mol. Catal. A: Chem.
,
180
(
1
), pp.
141
159
. 10.1016/S1381-1169(01)00421-6
20.
Wittstock
,
G.
,
Strübing
,
A.
,
Szargan
,
R.
, and
Werner
,
G.
,
1998
, “
Glucose Oxidation at Bismuth-Modified Platinum Electrodes
,”
J. Electroanal. Chem.
,
444
(
1
), pp.
61
73
. 10.1016/S0022-0728(97)00559-7
21.
Jo
,
S.
,
Kwon
,
J.
,
Cho
,
K.-Y.
,
Kim
,
D. H.
, and
Eom
,
K.
,
2019
, “
Enhanced Activity and Stability of Co–Ni–P–B Catalyst for the Hydrogen Evolution Reaction via Predeposition of Co–Ni on a Cu Substrate
,”
Catal. Today.
10.1016/j.cattod.2019.07.001
22.
Tang
,
B.
,
Wang
,
S.
,
Li
,
R.
,
Gou
,
X.
, and
Long
,
J.
,
2019
, “
Urea Treated Metal Organic Frameworks-Graphene Oxide Composites Derived N-Doped Co-Based Materials as Efficient Catalyst for Enhanced Oxygen Reduction
,”
J. Power Sources
,
425
, pp.
76
86
. 10.1016/j.jpowsour.2019.04.007
23.
Fa
,
D.
,
Zhou
,
M.
,
Zhao
,
H.
,
Jiang
,
Y.
, and
Miao
,
Y.
,
2018
, “
3D Flower-Like Ni–Co–S With High Specific Surface Area for the Electrocatalytic Oxidation of Methanol
,”
Polyhedron
,
144
, pp.
11
17
. 10.1016/j.poly.2018.01.006
24.
Paul
,
S.
, and
Naimuddin
,
S.
,
2015
, “
Electrochemical Characterization of Synthesized Ni–Co and Ni–Co–Fe Electrodes for Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
1
), p.
8
. 10.1115/1.4029063
25.
Pharkya
,
P.
,
Alfantazi
,
A.
, and
Farhat
,
Z.
,
2005
, “
Fabrication Using High-Energy Ball-Milling Technique and Characterization of Pt–Co Electrocatalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
3
), pp.
171
178
. 10.1115/1.1895985
26.
Vadivel
,
S.
,
Naveen
,
A. N.
,
Kamalakannan
,
V. P.
,
Cao
,
P.
, and
Balasubramanian
,
N.
,
2015
, “
Facile Large Scale Synthesis of Bi2S3 Nano Rods-Graphene Composite for Photocatalytic Photoelectrochemical and Supercapacitor Application
,”
Appl. Surf. Sci.
,
351
, pp.
635
645
. 10.1016/j.apsusc.2015.04.101
27.
Zhai
,
X.
,
Gao
,
J.
,
Xu
,
X.
,
Hong
,
W.
,
Wang
,
H.
,
Wu
,
F.
, and
Liu
,
Y.
,
2018
, “
3D Interconnected Bi2S3 Nanosheets Network Directly Grown on Nickel Foam as Advanced Performance Binder-Free Electrode for Hybrid Asymmetric Supercapacitor
,”
J. Power Sources
,
396
, pp.
648
658
. 10.1016/j.jpowsour.2018.06.081
28.
Ouyang
,
L.
,
Miao
,
Y.
,
Xu
,
L.
,
Xiao
,
M.
,
Liang
,
X.
,
Li
,
W.
, and
Yang
,
Y.
,
2015
, “
Self-Adsorption of an Ultrathin Bismuth Layer in the Size of Ions on an Au Surface
,”
Electrocatalysis
,
6
(
2
), pp.
211
219
. 10.1007/s12678-014-0235-9
29.
Gao
,
H.
,
Zhen
,
W.
,
Ma
,
J.
, and
Lu
,
G.
,
2017
, “
High Efficient Solar Hydrogen Generation by Modulation of Co–Ni Sulfide (220) Surface Structure and Adjusting Adsorption Hydrogen Energy
,”
Appl. Catal. B
,
206
, pp.
353
363
. 10.1016/j.apcatb.2017.01.048
30.
Chen
,
H.
,
Jiang
,
J.
,
Zhang
,
L.
,
Wan
,
H.
,
Qi
,
T.
, and
Xia
,
D.
,
2013
, “
Highly Conductive NiCo2S4 Urchin-Like Nanostructures for High-Rate Pseudocapacitors
,”
Nanoscale
,
5
(
19
), pp.
8879
8883
. 10.1039/c3nr02958a
31.
Pu
,
J.
,
Cui
,
F.
,
Chu
,
S.
,
Wang
,
T.
,
Sheng
,
E.
, and
Wang
,
Z.
,
2014
, “
Preparation and Electrochemical Characterization of Hollow Hexagonal NiCo2S4 Nanoplates as Pseudocapacitor Materials
,”
ACS Sustain. Chem. Eng.
,
2
(
4
), pp.
809
815
. 10.1021/sc400472z
32.
Yang
,
J.
,
Liu
,
G.
,
Yan
,
J.
,
Zhang
,
X.
,
Shi
,
Z.
, and
Qiao
,
G.
,
2017
, “
Enhanced the Thermoelectric Properties of n-Type Bi2S3 Polycrystalline by Iodine Doping
,”
J. Alloys Compd.
,
728
, pp.
351
356
. 10.1016/j.jallcom.2017.08.148
33.
Wang
,
Y.
,
Chen
,
J.
,
Jiang
,
L.
,
Liu
,
F.
,
Lai
,
Y.
, and
Li
,
J.
,
2017
, “
Characterization of Bi2S3 Thin Films Synthesized by an Improved Successive Ionic Layer Adsorption and Reaction (SILAR) Method
,”
Mater. Lett.
,
209
, pp.
479
482
. 10.1016/j.matlet.2017.08.039
34.
Fang
,
L.
,
Qiu
,
Y.
,
Zhai
,
T.
,
Wang
,
F.
,
Lan
,
M.
,
Huang
,
K.
, and
Jing
,
Q.
,
2017
, “
Flower-Like Nanoarchitecture Assembled From Bi2S3 Nanorod/MoS2 Nanosheet Heterostructures for High-Performance Supercapacitor Electrodes
,”
Colloids Surf. A
,
535
, pp.
41
48
. 10.1016/j.colsurfa.2017.09.022
35.
Song
,
X.
,
Chen
,
H. C.
,
Huang
,
C.
,
Qin
,
Y.
, and
Li
,
H.
,
2018
, “
Highly Active and Porous M3S4(M = Ni, Co) With Enriched Electroactive Edge Sites for Hybrid Supercapacitor With Better Power and Energy Delivery Performance
,”
Electrochim. Acta
,
283
, pp.
121
131
. 10.1016/j.electacta.2018.06.160
36.
Du
,
Y.
,
Li
,
Z.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
L.
,
2018
, “
Nickel-Iron Phosphides Nanorods Derived From Bimetallic-Organic Frameworks for Hydrogen Evolution Reaction
,”
Appl. Surf. Sci.
,
457
, pp.
1081
1086
. 10.1016/j.apsusc.2018.06.167
37.
Khallafallah Hassen
,
D.
,
Selim
,
M. M.
,
El-Safty
,
S. A.
,
Khalil
,
K. A.
,
Abu el-Maged
,
G.
, and
Dewidar
,
M.
,
2017
, “
Graphene-Supported Co(OH)2 Mesostructures for Ethanol Oxidation Reaction Electrocatalysis
,”
Nano-Struct. Nano-Objects
,
9
, pp.
31
39
. 10.1016/j.nanoso.2016.12.004
38.
Zhou
,
M.
,
Liu
,
Y.
,
Fa
,
D.
,
Qian
,
L.
, and
Miao
,
Y.
,
2018
, “
Growth of Radial Microspheres of Ni–Co–O at Porous Ti and Its Phosphorization for High Efficient Hydrogen Evolution
,”
Electrochim. Acta
,
259
, pp.
329
337
. 10.1016/j.electacta.2017.11.001
39.
Yang
,
Z.
,
Miao
,
Y.
,
Wang
,
T.
,
Liang
,
X.
,
Xiao
,
M.
,
Li
,
W.
, and
Yang
,
Y.
,
2014
, “
The Self-Adsorption of Ni Ultrathin Layer on Glassy Carbon Surface and Their Electrocatalysis Toward Glucose
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
H375
H378
. 10.1149/2.049406jes
40.
Gong
,
Y.
,
Pan
,
H.
,
Xu
,
Z.
,
Yang
,
Z.
,
Lin
,
Y.
, and
Zhang
,
M.
,
2018
, “
ACo2O4 (A = Ni, Zn, Mn) Nanostructure Arrays Grown on Nickel Foam as Efficient Electrocatalysts for Oxygen Evolution Reaction
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14360
14368
. 10.1016/j.ijhydene.2018.06.025
41.
Xiao
,
M.
,
Tian
,
Y.
,
Yan
,
Y.
,
Feng
,
K.
, and
Miao
,
Y.
,
2015
, “
Electrodeposition of Ni(OH)2/NiOOH in the Presence of Urea for the Improved Oxygen Evolution
,”
Electrochim. Acta
,
164
, pp.
196
202
. 10.1016/j.electacta.2015.02.205
42.
Tong
,
Y. Y.
,
Gu
,
C. D.
,
Zhang
,
J. L.
,
Tang
,
H.
,
Li
,
Y.
,
Wang
,
X. L.
, and
Tu
,
J. P.
,
2016
, “
Urchin-Like Ni–Co–P–O Nanocomposite as Novel Methanol Electro-Oxidation Materials in Alkaline Environment
,”
Electrochim. Acta
,
187
, pp.
11
19
. 10.1016/j.electacta.2015.10.195
43.
Xiao
,
M.
,
Yang
,
D.
,
Yan
,
Y.
,
Tian
,
Y.
,
Zhou
,
M.
,
Hao
,
M.
,
Cheng
,
R.
, and
Miao
,
Y.
,
2015
, “
Nanoplates and Nanospheres of Co3(VO4)2 as Noble Metal-Free Electrocatalysts for Oxygen Evolution
,”
Electrochim. Acta
,
180
, pp.
260
267
. 10.1016/j.electacta.2015.08.131
44.
Xiao
,
M.
,
Zhang
,
Z.
,
Tian
,
Y.
,
Miao
,
Y.
, and
Wang
,
J.
,
2017
, “
Co–Fe–Se Ultrathin Nanosheet-Fabricated Microspheres for Efficient Electrocatalysis of Hydrogen Evolution
,”
J. Appl. Electrochem.
,
47
(
3
), pp.
361
367
. 10.1007/s10800-016-1014-5
You do not currently have access to this content.