Abstract

Sodium-ion batteries have low energy density, low capacity, and inferior cycling performance when compared with Li-ion batteries. However, lithium depletion poses a serious problem for the production and cost of Li-ion batteries. In the present work, NaNi1/3Mn1/3Co1/3O2 was synthesized as the cathode material for Na-ion batteries using the sol–gel method. The conventional cathode material used in Na-ion batteries had been replaced with the synthesized cathode material, and the data had been collected by performing charging/discharging experiments. The support vector regression synchronized cross-validation simplex algorithm cluster was then used for predictive modeling and optimization of the fabrication process of the positive electrode material of sodium-ion batteries. The stable normal distribution without any skewness validated the robustness of the model for better accuracy and stability of the Na-ion batteries. The optimized value of capacity is 176 mAh/g for 99 cycles, which is better than those of conventional batteries used for commercial storage purposes.

References

1.
Kubota
,
K.
, and
Komaba
,
S.
,
2015
, “
Practical Issues and Future Perspective for Na-ion Batteries
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2538
A2550
. 10.1149/2.0151514jes
2.
Wang
,
H. G.
,
Li
,
W.
,
Liu
,
D. P.
,
Feng
,
X. L.
,
Wang
,
J.
,
Yang
,
X. Y.
,
Zhang
,
X. B.
,
Zhu
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Flexible Electrodes for Sodium-Ion Batteries: Recent Progress and Perspectives
,”
Adv. Mater.
,
29
(
45
), p.
1703012
. 10.1002/adma.201703012
3.
Pan
,
H.
,
Hu
,
Y. S.
, and
Chen
,
L.
,
2013
, “
Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage
,”
Energy Environ. Sci.
,
6
(
8
), pp.
2338
2360
. 10.1039/c3ee40847g
4.
Hwang
,
J. Y.
,
Myung
,
S. T.
, and
Sun
,
Y. K.
,
2017
, “
Sodium-Ion Batteries: Present and Future
,”
Chem. Soc. Rev.
,
46
(
12
), pp.
3529
3614
. 10.1039/C6CS00776G
5.
Sawicki
,
M.
, and
Shaw
,
L. L.
,
2015
, “
Advances and Challenges of Sodium ion Batteries as Post Lithium Ion Batteries
,”
RSC Adv.
,
5
(
65
), pp.
53129
53154
. 10.1039/C5RA08321D
6.
Noh
,
H. J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li [NixCoyMnz] O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
(
July
), pp.
121
130
. 10.1016/j.jpowsour.2013.01.063
7.
Sathiya
,
M.
,
Hemalatha
,
K.
,
Ramesha
,
K.
,
Tarascon
,
J. M.
, and
Prakash
,
A. S.
,
2012
, “
Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2
,”
Chem. Mater.
,
24
(
10
), pp.
1846
1853
. 10.1021/cm300466b
8.
Kumari
,
T.
,
Gopal
,
R.
,
Goyal
,
A.
, and
Joshi
,
J.
,
2019
, “
Sol–Gel Synthesis of Pd@ PdO Core–Shell Nanoparticles and Effect of Precursor Chemistry on Their Structural and Optical Properties
,”
J. Inorg. Organomet. Polym. Mater.
,
29
(
2
), pp.
316
325
. 10.1007/s10904-018-1001-x
9.
Gopal
,
R.
,
Goyal
,
A.
,
Saini
,
A.
,
Nagar
,
M.
,
Sharma
,
N.
,
Gupta
,
D. K.
, and
Dhayal
,
V.
,
2018
, “
Sol-Gel Synthesis of Ga2O3 Nanorods and Effect of Precursor Chemistry on Their Structural and Morphological Properties
,”
Ceram. Int.
,
44
(
16
), pp.
19099
19105
. 10.1016/j.ceramint.2018.07.173
10.
Hwang
,
J. Y.
,
Yoon
,
C. S.
,
Belharouak
,
I.
, and
Sun
,
Y. K.
,
2016
, “
A Comprehensive Study of the Role of Transition Metals in O3-Type Layered Na [Ni x Co y Mn z] O 2 (x = 1/3, 0.5, 0.6, and 0.8) Cathodes for Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
4
(
46
), pp.
17952
17959
. 10.1039/C6TA07392A
11.
Rangasamy
,
V. S.
,
Thayumanasundaram
,
S.
,
Locquet
,
J. P.
, and
Seo
,
J. W.
,
2017
, “
Influence of Sol-Gel Precursors on the Electrochemical Performance of NaMn0.33 Ni0.33 Co0.33 O2 Positive Electrode for Sodium-Ion Battery
,”
Ionics
,
23
(
3
), pp.
645
653
. 10.1007/s11581-016-1824-9
12.
Ong
,
S. P.
,
Chevrier
,
V. L.
,
Hautier
,
G.
,
Jain
,
A.
,
Moore
,
C.
,
Kim
,
S.
,
Ma
,
X.
, and
Ceder
,
G.
,
2011
, “
Voltage, Stability and Diffusion Barrier Differences Between Sodium-Ion and Lithium-Ion Intercalation Materials
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3680
3688
. 10.1039/c1ee01782a
13.
Cao
,
Y.
,
Xiao
,
L.
,
Wang
,
W.
,
Choi
,
D.
,
Nie
,
Z.
,
Yu
,
J.
,
Saraf
,
L. V.
,
Yang
,
Z.
, and
Liu
,
J.
,
2011
, “
Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires With Long Cycle Life
,”
Adv. Mater.
,
23
(
28
), pp.
3155
3160
. 10.1002/adma.201100904
14.
Koo
,
B.
,
Chattopadhyay
,
S.
,
Shibata
,
T.
,
Prakapenka
,
V. B.
,
Johnson
,
C. S.
,
Rajh
,
T.
, and
Shevchenko
,
E. V.
,
2013
, “
Intercalation of Sodium Ions Into Hollow Iron Oxide Nanoparticles
,”
Chem. Mater.
,
25
(
2
), pp.
245
252
. 10.1021/cm303611z
15.
Zhao
,
J.
,
Xu
,
J.
,
Lee
,
D. H.
,
Dimov
,
N.
,
Meng
,
Y. S.
, and
Okada
,
S.
,
2014
, “
Electrochemical and Thermal Properties of P2-Type Na2/3Fe1/3Mn2/3O2 for Na-ion Batteries
,”
J. Power Sources
,
264
(
Oct.
), pp.
235
239
. 10.1016/j.jpowsour.2014.04.048
16.
Lee
,
J. J.
,
2014
, “
Low-Cost Sodium-Ion Battery to Enable Grid Scale Energy Storage: Prussian Blue-Derived Cathode and Complete Battery Integration
,”
Peer Review and Update Meeting 2014-U.S. Department of Energy Storage Systems Program (ESSP) Peer Review
,
Washington, DC
,
Sept. 17
. https://www.energy.gov/sites/prod/files/2015/01/f19/10_2014Storage_PeerRev_Lee_JJ_Low-Cost_Sodium-ion_poster.pdf.
17.
Goyal
,
A.
,
Niu
,
X.
,
Le
,
N. P. P.
,
Le Huynh
,
N. T.
,
Le
,
M. L. P.
,
Gao
,
L.
, and
Garg
,
A.
,
2019
, “
Precision Manufacturing of NaNi 1/3 Mn 1/3 Co 1/3 O 2 Cathodes: Study of Structure Evolution and Performance at Varied Calcination Temperatures
,”
J. Electron. Mater.
,
48
, pp.
1
9
. 10.1007/s11664-019-07340-1
18.
Basak
,
D.
,
Pal
,
S.
, and
Patranabis
,
D. C.
,
2007
, “
Support Vector Regression
,”
Neural Inf. Process. Lett. Rev.
,
11
(
10
), pp.
203
224
.
19.
Vapnik
,
V.
,
Golowich
,
S. E.
, and
Smola
,
A. J.
,
1997
, “
Support Vector Method for Function Approximation, Regression Estimation and Signal Processing
,”
9th Proceedings for Advances in Neural Information Processing System
, pp.
281
287
.
20.
Ellis
,
B. L.
,
Makahnouk
,
W. R. M.
,
Makimura
,
Y.
,
Toghill
,
K.
, and
Nazar
,
L. F.
,
2007
, “
A Multifunctional 3.5 V Iron-Based Phosphate Cathode for Rechargeable Batteries
,”
Nat. Mater.
,
6
(
10
), p.
749
. 10.1038/nmat2007
21.
Barker
,
J.
,
Heap
,
R. J.
,
Roche
,
N.
,
Tan
,
C.
,
Sayers
,
R.
, and
Lui
,
Y.
,
2014
,
Low Cost Na-ion Battery Technology
,
Faradion Ltd
,
San Francisco, US.
22.
Zhuo
,
H.
,
Wang
,
X.
,
Tang
,
A.
,
Liu
,
Z.
,
Gamboa
,
S.
, and
Sebastian
,
P. J.
,
2006
, “
The Preparation of NaV1− xCrxPO4F Cathode Materials for Sodium-ion Battery
,”
J. Power Sources
,
160
(
1
), pp.
698
703
. 10.1016/j.jpowsour.2005.12.079
23.
Yun
,
L.
,
Li
,
W.
,
Garg
,
A.
,
Maddila
,
S.
,
Gao
,
L.
,
Fan
,
Z.
,
Buragohain
,
P.
, and
Wang
,
C. T.
,
2019
, “
Maximization of Extraction of Cadmium and Zinc During Recycling of Spent Battery Mix: An Application of Combined Genetic Programming and Simulated Annealing Approach
,”
J. Cleaner Prod.
,
218
(
May
), pp.
130
140
. 10.1016/j.jclepro.2018.11.226
24.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
,
Gao
,
L.
,
Garg
,
A.
, and
Wang
,
C. T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021011
. 10.1115/1.4042093
You do not currently have access to this content.