A new hybrid system of molten carbonate fuel cell (MCFC) and homogenous charge compression ignition (HCCI) engine is suggested to improve the overall system efficiency and performance. In the proposed system, the catalytic burner in a standalone MCFC system is replaced with the HCCI engine. The HCCI engine is chosen over conventional spark-ignition or compression-ignition engines since it has been demonstrated to operate with highly diluted reactant mixture, which is suitable to run directly with the MCFC anode off-gas. A nonisothermal numerical model that incorporates major fuel cell losses is developed to predict the fuel cell performance. The fuel cell model assumes parallel anode and cathode flow configuration with LiNaCO3 as an electrolyte. It is integrated with an in-house HCCI engine model to investigate the hybrid system performance. At the selected design point operation around 300 kW power output, the maximum hybrid system efficiency is 21.2% (relative) higher than that of a standalone fuel cell system and, thus, achieving around 60% overall, which demonstrates the potential of the suggested hybrid system as a highly-efficient distributed power generation source in the near future.

References

1.
James
,
R.
,
1999
,
Fuel Cell Technology: An Alternative Energy System for the Future
,
U.S. Department of Energy, Federal Energy Technology Center, Morgantown, WV
.
2.
Tarman
,
P. B.
,
1996
, “
Fuel Cells for Distributed Power Generation
,”
J. Power Sources
,
61
, pp.
87
89
.10.1016/S0378-7753(96)02341-5
3.
Campanari
,
S.
, and
Iora
,
P.
,
2007
, “
Development of a Three-Dimensional Molten Carbonate Fuel Cell Model and Application to Hybrid Cycle Simulations
,”
ASME J. Fuel Cell Sci. Tech.
,
4
, pp.
501
510
.10.1115/1.2756850
4.
Lunghi
,
P.
,
Ubertini
,
S.
, and
Desideri
,
U.
,
2000
, “
Highly Efficient Electricity Generation Through a Hybrid Molten Carbonate Fuel Cell-Closed Loop Gas Turbine Plant
,”
Energy Convers. Manage.
,
42
, pp.
1657
1672
.10.1016/S0196-8904(00)00162-X
5.
Lobachyov
,
K. V.
, and
Richter
,
H. R.
,
1998
, “
An Advanced Integrated Biomass Gasification and Molten Fuel Cell Power System
,”
Energy Convers. Manage.
,
39
, pp.
1931
1943
.10.1016/S0196-8904(98)00077-6
6.
Yoshiba
,
F.
,
Izaki
,
Y.
, and
Watanabe
,
T.
,
2004
, “
System Calculation of Integrated Coal Gasification/Molten Carbonate Fuel Cell Combined Cycle
,”
J. Power Sources
,
132
, pp.
52
58
.10.1016/j.jpowsour.2004.01.037
7.
Campanari
,
S.
,
Chiesa
,
P.
, and
Manzolini
,
G.
,
2010
, “
CO2 Capture From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Greenhouse Gas Control
,
4
, pp.
441
451
.10.1016/j.ijggc.2009.11.007
8.
Angelino
,
G.
, and
di Paliano
,
P. C.
,
2000
, “
Organic Rankine Cycles (ORCs) for Energy Recovery From Molten Carbonate Fuel Cells
,”
35th Intersociety Energy Conversion Engineering Conference and Exhibit
, Las Vegas, NV, July 24–28, pp.
1400
1409
.10.1109/IECEC.2000.870957
9.
Sanchez
,
D.
,
Chacartegui
,
R.
,
Torres
,
M.
, and
Sanchez
,
T.
,
2009
, “
Stirling Based Fuel Cell Hybrid Systems: An Alternative for Molten Carbonate Fuel Cells
,”
J. Power Sources
,
192
, pp.
84
93
.10.1016/j.jpowsour.2008.12.061
10.
Munoz de Escalona
,
J. M.
,
Sanchez
,
D.
,
Chacartegui
,
R.
, and
Sanchez
,
T.
,
2013
, “
Performance Analysis of Hybrid Systems Incorporating High-Temperature Fuel Cells and Closed Cycle Heat Engines at Part-Load Operation
,”
Int. J. Hydrogen Energy
,
38
, pp.
570
578
.10.1016/j.ijhydene.2012.07.082
11.
Caton
,
P. A.
,
2005
, “
Residual-Effected Homogeneous Charge Compression Ignition Using Variable Vale Actuation
,” Ph.D. thesis, Stanford University, Stanford, CA.
12.
He
,
W.
,
1994
, “
A Simulation Model for Integrated Molten Carbonate Fuel Cell Systems
,”
J. Power Sources
,
49
, pp.
283
290
.10.1016/0378-7753(93)01826-4
13.
Standaert
,
F.
,
Hemmes
,
K.
, and
Woudstra
,
N.
,
1996
, “
Analytical Fuel Cell Modeling
,”
J. Power Sources
,
63
, pp.
221
234
.10.1016/S0378-7753(96)02479-2
14.
Standaert
,
F.
,
Hemmes
,
K.
, and
Woudstra
,
N.
,
1998
, “
Analytical Fuel Cell Modeling; Non-Isothermal Fuel Cells
,”
J. Power Sources
,
70
, pp.
181
199
.10.1016/S0378-7753(97)02662-1
15.
Yoshiba
,
F.
,
Abe
,
T.
, and
Watanabe
,
T.
,
2000
, “
Numerical Analysis of Molten Carbonate Fuel Cell Stack Performance: Diagnosis of Internal Conditions Using Cell Voltage Profiles
,”
J. Power Sources
,
87
, pp.
21
27
.10.1016/S0378-7753(99)00352-3
16.
Koh
,
J.-H.
,
Seo
,
H.-K.
,
Yoo
,
Y.-S.
, and
Lim
,
H. C.
,
2002
, “
Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack
,”
J. Chem. Eng.
,
87
, pp.
367
379
.10.1016/S1385-8947(01)00234-0
17.
Morita
,
H.
,
Komoda
,
M.
,
Mugikura
,
Y.
,
Izaki
,
Y.
,
Watanabe
,
T.
,
Masuda
,
Y.
, and
Matsuyama
,
T.
,
2002
, “
Performance Analysis of Molten Carbonate Fuel Cell Using a Li/Na Electrolyte
,
J. Power Sources
,
112
, pp.
509
518
.10.1016/S0378-7753(02)00468-8
18.
Baranak
,
M.
and
Atakul
,
H.
,
2007
, “
A Basic Model for Analysis of Molten Carbonate Fuel Cell Behavior
,”
J. Power Sources
,
172
, pp.
831
839
.10.1016/j.jpowsour.2007.05.027
19.
Kordesch
,
K.
, and
Simader
,
G.
,
1996
,
Fuel Cells and Their Applications
,
VCH
,
New York
, pp.
111
113
.
20.
Serauskas
,
B.
,
Frenklach
,
M.
,
Bowman
,
T.
,
Smith
,
G.
, and
Gardiner
,
B.
,
2013
, “
GRI-Mech™
,” The Gas Research Institute (GRI), Chicago, IL, http://www.me.berkeley.edu/gri-mech/
21.
FuelCell Energy, Inc., 2007, “DFC300MA™ Standard Powerplant Specification Summary,” White Paper, Fuel Cell Energy. Available at http://www.fuelcellenergy.com/assets/Specification-Summary1.pdf
22.
Song
,
H. H.
, and
Edwards
,
C. F.
,
2009
, “
Understanding Chemical Effects in Low-Load-Limit Extension of Homogeneous Charge Compression Ignition Engines Via Recompression Reaction
,”
Int J. Engine Res.
,
10
(
4
), pp.
231
250
.10.1243/14680874JER03409
23.
Song
,
H. H.
,
Padmanabhan
,
A.
,
Kaahaaina
,
N. B.
, and
Edwards
,
C. F.
,
2009
, “
Experimental Study of Recompression Reaction for Low-Load Operation in Direct-Injection Homogeneous Charge Compression Ignition Engines With N-Heptane and I-Octane Fuels
,”
Int. J. Engine Res.
,
10
(
4
), pp.
215
230
.10.1243/14680874JER03309
24.
Ministry of Commerce, Industry and Energy, 1999, “
Development of a 100kW Externally Reforming Molten Carbonate Fuel Cell System (Phase I: 25kW Class)
,”
Republic of Korea
, pp.
397
406
.
25.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
Columbus, OH
.
You do not currently have access to this content.