Abstract

Thermal energy storage (TES) devices use phase change materials (PCMs) to store and release thermal energy. Control-oriented models are needed to predict the behavior of TES devices and experimental validation is necessary to demonstrate the predictive capabilities of these models. This paper presents an experimental validation of a switched moving boundary (MB) approach for modeling TES devices, where the dynamics of the device are captured with fewer states than traditional models. A graph-based modeling approach is used to model heat flow, while the moving boundary captures the time-varying liquid and solid regions of the TES. The model uses a finite state machine (FSM) to switch between four modes of operation based on the state-of-charge (SOC) of the TES. Results show that the switched MB approach has similar accuracy and lower computational cost compared to traditional modeling approaches when predicting the SOC of an experimental TES device.

References

1.
Ghaeminezhad
,
N.
,
Wang
,
Z.
, and
Ouyang
,
Q.
,
2023
, “
A Review on Lithium-Ion Battery Thermal Management System Techniques: A Control-Oriented Analysis
,”
Appl. Therm. Eng.
,
219
, p.
119497
.10.1016/j.applthermaleng.2022.119497
2.
Chen
,
P.
, and
Wang
,
J.
,
2014
, “
Control-Oriented Model for Integrated Diesel Engine and Aftertreatment Systems Thermal Management
,”
Control Eng. Pract.
,
22
, pp.
81
93
.10.1016/j.conengprac.2013.09.009
3.
Agarwal
,
N.
,
Chiara
,
F.
, and
Canova
,
M.
,
2012
, “
Control-Oriented Modeling of an Automotive Thermal Management System
,”
IFAC Proc. Vol..
,
45
(
30
), pp.
392
399
.10.3182/20121023-3-FR-4025.00051
4.
Ma
,
Y.
,
Kelman
,
A.
,
Daly
,
A.
, and
Borrelli
,
F.
,
2012
, “
Predictive Control for Energy Efficient Buildings With Thermal Storage: Modeling, Stimulation, and Experiments
,”
IEEE Control Syst.
,
32
(
1
), pp.
44
64
.10.1109/MCS.2011.2172532
5.
Bird
,
T. J.
, and
Jain
,
N.
,
2020
, “
Dynamic Modeling and Validation of a Micro-Combined Heat and Power System With Integrated Thermal Energy Storage
,”
Appl. Energy.
,
271
, p.
114955
.10.1016/j.apenergy.2020.114955
6.
Frazzica
,
A.
,
Manzan
,
M.
,
Palomba
,
V.
,
Brancato
,
V.
,
Freni
,
A.
,
Pezzi
,
A.
, and
Vaglieco
,
B. M.
,
2022
, “
Experimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal Energy Storage for Hot Water Provision on Ships
,”
Energies
,
15
(
7
), p.
2596
.10.3390/en15072596
7.
Amagour
,
M. E. H.
,
Bennajah
,
M.
, and
Rachek
,
A.
,
2021
, “
Numerical Investigation and Experimental Validation of the Thermal Performance Enhancement of a Compact Finned-Tube Heat Exchanger for Efficient Latent Heat Thermal Energy Storage
,”
J. Cleaner Prod.
,
280
, p.
124238
.10.1016/j.jclepro.2020.124238
8.
Nazir
,
H.
,
Batool
,
M.
,
Bolivar Osorio
,
F. J.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Kannan
., and
A. M.
,
Inamuddin
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer.
,
129
, pp.
491
523
.10.1016/j.ijheatmasstransfer.2018.09.126
9.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
10.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
11.
Lee
,
D.
,
Ooka
,
R.
,
Ikeda
,
S.
,
Choi
,
W.
, and
Kwak
,
Y.
,
2020
, “
Model Predictive Control of Building Energy Systems With Thermal Energy Storage in Response to Occupancy Variations and Time-Variant Electricity Prices
,”
Energy Build.
,
225
, p.
110291
.10.1016/j.enbuild.2020.110291
12.
Laird
,
C. E.
, and
Alleyne
,
A. G.
,
2021
, “
Modeling, Control, and Design of Hybrid Electrical and Thermal Energy Storage Systems
,”. Master's thesis,
University of Illinois at Urbana-Champaign
, Urbana, IL.
13.
Laird
,
C. E.
, and
Alleyne
,
A. G.
,
2019
, “
A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications
,”
ASME
Paper No. DSCC2019-9089.10.1115/DSCC2019-9089
14.
Pangborn
,
H. C.
,
Laird
,
C. E.
, and
Alleyne
,
A. G.
,
2020
, “
Hierarchical Hybrid MPC for Management of Distributed Phase Change Thermal Energy Storage
,”
American Control Conference
, Denver, CO, July
1
3
.10.23919/ACC45564.2020.9147698
15.
Shanks
,
M.
,
Inyang-Udoh
,
U.
, and
Jain
,
N.
,
2023
, “
Design and Validation of a State-Dependent Riccati Equation Filter for State of Charge Estimation in a Latent Thermal Storage Device
,”
ASME J. Dyn. Syst., Meas., Control
,
145
(
9
), p.
091002
.10.1115/1.4062707
16.
Sakakini
,
T. J.
, and
Koeln
,
J. P.
,
2023
, “
Switched Moving Boundary Modeling of Phase Change Thermal Energy Storage Systems
,” IEEE Conference on Control Technology and Applications (
CCTA
), Bridgetown, Barbados, Aug. 16–18, pp. 941–947.10.1109/CCTA54093.2023.10252585
17.
Wang
,
W.
, and
Koeln
,
J. P.
,
2020
, “
Hierarchical Multi-Timescale Energy Management for Hybrid-Electric Aircraft
,”
ASME
Paper No. DSCC2020-3190.10.1115/DSCC2020-3190
18.
Shanks
,
M. A.
, and
Jain
,
N.
,
2022
, “
Design, Control, and Validation of a Transient Thermal Management System With Integrated Phase-Change Thermal Energy Storage
,” Master's thesis,
Purdue University, West Lafayette, IN
.
19.
Fasl
,
J. M.
, and
Alleyne
,
A. G.
,
2013
, “
Modeling and Control of Hybrid Vapor Compresson Cycles
,” Master's thesis,
University of Illinois at Urbana-Champaign, Champaign, IL
.
20.
Dede
,
A.
,
Giustina
,
D. D.
,
Massa
,
G.
,
Pasetti
,
M.
, and
Rinaldi
,
S.
,
2016
, “
A Smart pv Module With Integrated Electrical Storage for Smart Grid Applications
,”
International Symposium on Power Electronics, Electrical Drives, Automation and Motion
, Capri, Italy, June 22–24, pp.
895
900
.10.1109/SPEEDAM.2016.7525997
21.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
(
4
), pp.
695
719
.10.1017/S0022112076002012
22.
Wang
,
Y.
,
Chen
,
J.
, and
Zhang
,
W.
,
2019
, “
Natural Convection in a Circular Enclosure With an Internal Cylinder of Regular Polygon Geometry
,”
AIP Adv.
,
9
(
6
), p.
065023
.10.1063/1.5100892
23.
Zhang
,
K.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2014
, “
Two- and Three-Dimensional Numerical Simulations of Natural Convection in a Cylindrical Envelope With an Internal Concentric Cylinder With Slots
,”
Int. J. Heat Mass Transfer.
,
70
, pp.
434
438
.10.1016/j.ijheatmasstransfer.2013.11.015
24.
Francis
,
N. D.
,
Itamura
,
M. T.
,
Webb
,
S. W.
, and
James
,
D. L.
,
2002
, “
CFD Calculation of Internal Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
Sandia National Laboratories
, Albuquerque, NM.
25.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
, New York.
26.
Joybari
,
M. M.
,
Seddegh
,
S.
,
Wang
,
X.
, and
Haghighat
,
F.
,
2019
, “
Experimental Investigation of Multiple Tube Heat Transfer Enhancement in a Vertical Cylindrical Latent Heat Thermal Energy Storage System
,”
Renewable Energy
,
140
(
9
), pp.
234
244
.10.1016/j.renene.2019.03.037
You do not currently have access to this content.