Abstract

Closed-loop control of commercial building heating, ventilating, and air conditioning (HVAC) for demand response requires measurements used as feedback to the controllers. Demand response effectiveness is usually measured as a power deviation from baseline, but the building automation system (BAS) does not usually collect power measurements, and whole-building electric meters typically measure power at intervals of 15 min, which may be too slow for some types of demand response. Demand response strategies are sometimes focused on components of building HVAC systems, e.g., the response of supply/return fans to temperature set-point changes, but these components are usually not submetered. Fan power can be estimated from physics-based models leveraging BAS data, e.g., airflow measurements; but our ability to effectively close the loop on these estimates is not clear. In this paper, we introduce a massive dataset that contains both submetered fan power data and BAS data for several building HVAC systems during typical operation and demand response events. Through a case study we show that models leveraging BAS data alone do not provide accurate estimates of fan power during event transients, making it unlikely that closed-loop control of commercial building HVAC components for demand response would be effective using BAS data alone. This demonstrates the value of submetering HVAC components. More broadly, our dataset will enable future research bridging the gap between building control and power systems research.

References

1.
Aghaei
,
J.
, and
Alizadeh
,
M.-I.
,
2013
, “
Demand Response in Smart Electricity Grids Equipped With Renewable Energy Sources: A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
64
72
.10.1016/j.rser.2012.09.019
2.
Taylor
,
J. A.
,
Dhople
,
S. V.
, and
Callaway
,
D. S.
,
2016
, “
Power Systems Without Fuel
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1322
1336
.10.1016/j.rser.2015.12.083
3.
Callaway
,
D. S.
, and
Hiskens
,
I. A.
,
2011
, “
Achieving Controllability of Electric Loads
,”
Proc. IEEE
,
99
(
1
), pp.
184
199
.10.1109/JPROC.2010.2081652
4.
Goddard
,
G.
,
Klose
,
J.
, and
Backhaus
,
S.
,
2014
, “
Model Development and Identification for Fast Demand Response in Commercial HVAC Systems
,”
IEEE Trans. Smart Grid
,
5
(
4
), pp.
2084
2092
.10.1109/TSG.2014.2312430
5.
Zhao
,
P.
,
Henze
,
G. P.
,
Plamp
,
S.
, and
Cushing
,
V. J.
,
2013
, “
Evaluation of Commercial Building Hvac Systems as Frequency Regulation Providers
,”
Energy Build.
,
67
, pp.
225
235
.10.1016/j.enbuild.2013.08.031
6.
Hao
,
H.
,
Lin
,
Y.
,
Kowli
,
A. S.
,
Barooah
,
P.
, and
Meyn
,
S.
,
2014
, “
Ancillary Service to the Grid Through Control of Fans in Commercial Building HVAC Systems
,”
IEEE Trans. Smart Grid
,
5
(
4
), pp.
2066
2074
.10.1109/TSG.2014.2322604
7.
Cai
,
J.
, and
Braun
,
J. E.
,
2019
, “
Assessments of Demand Response Potential in Small Commercial Buildings Across the United States
,”
Sci. Technol. Built Environ.
,
25
(
10
), pp.
1437
1455
.10.1080/23744731.2019.1629245
8.
Yin
,
R.
,
Kara
,
E. C.
,
Li
,
Y.
,
DeForest
,
N.
,
Wang
,
K.
,
Yong
,
T.
, and
Stadler
,
M.
,
2016
, “
Quantifying Flexibility of Commercial and Residential Loads for Demand Response Using Setpoint Changes
,”
Appl. Energy
,
177
, pp.
149
164
.10.1016/j.apenergy.2016.05.090
9.
Lin
,
Y.
,
Barooah
,
P.
,
Meyn
,
S.
, and
Middelkoop
,
T.
,
2015
, “
Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems
,”
IEEE Trans. Smart Grid
,
6
(
2
), pp.
776
783
.10.1109/TSG.2014.2381596
10.
Beil
,
I.
,
Hiskens
,
I.
, and
Backhaus
,
S.
,
2016
, “
Frequency Regulation From Commercial Building HVAC Demand Response
,”
Proc. IEEE
,
104
(
4
), pp.
745
757
.10.1109/JPROC.2016.2520640
11.
Lin
,
Y.
,
Barooah
,
P.
, and
Meyn
,
S. P.
,
2013
, “
Low-Frequency Power-Grid Ancillary Services From Commercial Building HVAC Systems
,”
IEEE International Conference on Smart Grid Communications
, Vancouver, BC, Canada, pp.
169
174
.10.1109/SmartGridComm.2013.6687952
12.
Maasoumy
,
M.
,
Jorge
,
O.
,
Culler
,
D.
, and
Sangiovanni-Vincentelli
,
A.
,
2013
, “
Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid
,”
IEEE Green Energy and Systems Conference
, Long Beach, CA.https://www.researchgate.net/publication/258849345_Flexibility_of_Commercial_Building_HVAC_Fan_as_Ancillary_Service_for_Smart_Grid
13.
U.S. Energy Information Administration,
2018
, “
Use of Energy Explained: Use of Energy in Commercial Buildings
,”
U.S. Energy Information Administration
, accessed Mar. 2023, https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings-in-depth.php.
14.
Keskar
,
A.
,
Lei
,
S.
,
Webb
,
T.
,
Nagy
,
S.
,
Lee
,
H.
,
Hiskens
,
I. A.
,
Mathieu
,
J. L.
, and
Johnson
,
J. X.
,
2020
, “
Stay Cool and Be Flexible: Energy-Efficient Grid Services Using Commercial Buildings HVAC Systems
,”
ACEEE Summer Study on Energy Efficiency in Buildings
, pp. 12-209–12-224.
15.
Hao
,
H.
,
Corbin
,
C. D.
,
Kalsi
,
K.
, and
Pratt
,
R. G.
,
2017
, “
Transactive Control of Commercial Buildings for Demand Response
,”
IEEE Trans. Power Syst.
,
32
(
1
), pp.
774
783
.10.1109/TPWRS.2016.2559485
16.
Mathieu
,
J. L.
,
Price
,
P. N.
,
Kiliccote
,
S.
, and
Piette
,
M. A.
,
2011
, “
Quantifying Changes in Building Electricity Use, With Application to Demand Response
,”
IEEE Trans. Smart Grid
,
2
(
3
), pp.
507
518
.10.1109/TSG.2011.2145010
17.
Miller
,
C.
, and
Meggers
,
F.
,
2017
, “
The Building Data Genome Project: An Open, Public Data Set From Non-Residential Building Electrical Meters
,”
Energy Procedia
,
122
, pp.
439
444
.10.1016/j.egypro.2017.07.400
18.
Miller
,
C.
,
Kathirgamanathan
,
A.
,
Picchetti
,
B.
,
Arjunan
,
P.
,
Park
,
J. Y.
,
Nagy
,
Z.
,
Raftery
,
P.
,
et al.
,
2020
, “
The Building Data Genome Project 2, Energy Meter Data From the ASHRAE Great Energy Predictor III Competition
,”
Sci. Data
,
7
(
1
), p.
368
.10.1038/s41597-020-00712-x
19.
Haack
,
J.
,
Katipamula
,
S.
,
Allwardt
,
C.
,
Lutes
,
R.
,
Niddodi
,
S.
,
Sivaramakrishnan
,
C.
, and
Larson
,
J.
,
2019
, “
PNNL Systems Engineering Building VOLTTRON Data Set
,” accessed Mar. 2023, https://www.osti.gov/biblio/1509487
20.
de Chalendar
,
J. A.
,
McMahon
,
C.
,
Fuentes Valenzuela
,
L.
,
Glynn
,
P. W.
, and
Benson
,
S. M.
,
2023
, “
Unlocking Demand Response in Commercial Buildings: Empirical Response of Commercial Buildings to Daily Cooling Set Point Adjustments
,”
Energy Build.
,
278
, p.
112599
.10.1016/j.enbuild.2022.112599
21.
Vrettos
,
E.
,
Kara
,
E. C.
,
MacDonald
,
J.
,
Andersson
,
G.
, and
Callaway
,
D. S.
,
2018
, “
Experimental Demonstration of Frequency Regulation by Commercial Buildings-Part I: Modeling and Hierarchical Control Design
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3213
3223
.10.1109/TSG.2016.2628897
22.
Vrettos
,
E.
,
Kara
,
E. C.
,
MacDonald
,
J.
,
Andersson
,
G.
, and
Callaway
,
D. S.
,
2018
, “
Experimental Demonstration of Frequency Regulation by Commercial Buildings-Part II: Results and Performance Evaluation
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3224
3234
.10.1109/TSG.2016.2628893
23.
Su
,
L.
, and
Norford
,
L. K.
,
2015
, “
Demonstration of HVAC Chiller Control for Power Grid Frequency Regulation-Part 1: Controller Development and Experimental Results
,”
Sci. Technol. Built Environ.
,
21
(
8
), pp.
1134
1142
.10.1080/23744731.2015.1072449
24.
Su
,
L.
, and
Norford
,
L. K.
,
2015
, “
Demonstration of HVAC Chiller Control for Power Grid Frequency Regulation-Part 2: Discussion of Results and Considerations for Broader Deployment
,”
Sci. Technol. Built Environ.
,
21
(
8
), pp.
1143
1153
.10.1080/23744731.2015.1072455
25.
Lin
,
Y.
,
Mathieu
,
J. L.
,
Johnson
,
J. X.
,
Hiskens
,
I. A.
, and
Backhaus
,
S.
,
2017
, “
Explaining Inefficiencies in Commercial Buildings Providing Power System Ancillary Services
,”
Energy Build.
,
152
, pp.
216
226
.10.1016/j.enbuild.2017.07.042
26.
Keskar
,
A.
,
Anderson
,
D.
,
Johnson
,
J. X.
,
Hiskens
,
I. A.
, and
Mathieu
,
J. L.
,
2019
, “
Do Commercial Buildings Become Less Efficient When They Provide Grid Ancillary Services?
,”
Energy Efficiency
,
13
(
3
), pp.
487
501
.10.1007/s12053-019-09787-x
27.
Vindel
,
E.
,
Akinci
,
B.
, and
Bergés
,
M.
,
2023
, “
A Critical Investigation of the Readiness of VAV Systems to Adopt Grid-Interactive Capabilities
,”
Energy Build.
,
286
, p.
112974
.10.1016/j.enbuild.2023.112974
28.
Lu
,
X.
,
Adetola
,
V.
, and
O'Neill
,
Z.
,
2021
, “
What Are the Impacts on the HVAC System When It Provides Frequency Regulation? – a Comprehensive Case Study With a Multi-Zone Variable Air Volume (VAV) System
,”
Energy Build.
,
243
, p.
110995
.10.1016/j.enbuild.2021.110995
29.
Braun
,
J. E.
,
1990
, “
Reducing Energy Costs and Peak Electrical Demand Through Optimal Control of Building Thermal Storage
,”
ASHRAE Trans.
,
96
(
2
), pp.
876
888
.https://appliedenergyscience.lbl.gov/publications/reducing-energy-costs-and-peak
30.
Keskar
,
A.
,
Lei
,
S.
,
Webb
,
T.
,
Nagy
,
S.
,
Hiskens
,
I. A.
,
Mathieu
,
J. L.
, and
Johnson
,
J. X.
,
2022
, “
Assessing the Performance of Global Thermostat Adjustment in Commercial Buildings for Load Shifting Demand Response
,”
Environ. Res.: Infrastructure Sustainability
,
2
(
1
), p.
015003
.10.1088/2634-4505/ac51c5
31.
Li
,
Y.
,
O'Neill
,
Z. D.
, and
Zhou
,
X.
,
2019
, “
Development of Control Quality Factor for HVAC Control Loop Performance Assessment I – Methodology (ASHRAE RP-1587
),”
Sci. Technol. Built Environ.
,
25
(
5
), pp.
656
673
.10.1080/23744731.2018.1556055
32.
Liu
,
R.
,
Li
,
Y.
,
O'Neill
,
Z. D.
, and
Zhou
,
X.
,
2019
, “
Development of Control Quality Factor for HVAC Control Loop Performance assessment-II: Field Testing and Results (ASHRAE RP-1587
),”
Sci. Technol. Built Environ.
,
25
(
7
), pp.
873
888
.10.1080/23744731.2019.1576458
33.
Wetter
,
M.
,
2013
, “
Fan and Pump Model That Has a Unique Solution for Any Pressure Boundary Condition and Control Signal
,”
Proceedings of the 13th IBPSA Conference
, Chambéry, France, pp.
3505
3512
.
34.
Raman
,
N. S.
, and
Barooah
,
P.
,
2020
, “
On the Round-Trip Efficiency of an HVAC-Based Virtual Battery
,”
IEEE Trans. Smart Grid
,
11
(
1
), pp.
403
410
.10.1109/TSG.2019.2923588
35.
Zakula
,
T.
,
Armstrong
,
P.
, and
Norford
,
L.
,
2014
, “
Modeling Environment for Model Predictive Control of Buildings
,”
Energy Build.
,
85
, pp.
549
559
.10.1016/j.enbuild.2014.09.039
36.
Jain
,
A.
,
Nghiem
,
T.
,
Morari
,
M.
, and
Mangharam
,
R.
,
2018
, “
Learning and Control Using Gaussian Processes
,”
ACM/IEEE 9th International Conference on Cyber-Physical Systems
, Porto, Portugal, pp.
140
149
.10.1109/ICCPS.2018.00022
37.
Tien
,
P. W.
,
Wei
,
S.
,
Darkwa
,
J.
,
Wood
,
C.
, and
Calautit
,
J. K.
,
2022
, “
Machine Learning and Deep Learning Methods for Enhancing Building Energy Efficiency and Indoor Environmental Quality – a Review
,”
Energy AI
,
10
, p.
100198
.10.1016/j.egyai.2022.100198
38.
Drgoňa
,
J.
,
Arroyo
,
J.
,
Cupeiro Figueroa
,
I.
,
Blum
,
D.
,
Arendt
,
K.
,
Kim
,
D.
,
Ollé
,
E. P.
, and
et al
.,
2020
, “
All You Need to Know About Model Predictive Control for Buildings
,”
Annu. Rev. Control
,
50
, pp.
190
232
.10.1016/j.arcontrol.2020.09.001
39.
Azuatalam
,
D.
,
Lee
,
W.-L.
,
de Nijs
,
F.
, and
Liebman
,
A.
,
2020
, “
Reinforcement Learning for Whole-Building HVAC Control and Demand Response
,”
Energy AI
,
2
, p.
100020
.10.1016/j.egyai.2020.100020
40.
Li
,
Z.
,
Sun
,
Z.
,
Meng
,
Q.
,
Wang
,
Y.
, and
Li
,
Y.
,
2022
, “
Reinforcement Learning of Room Temperature Set-Point of Thermal Storage Air-Conditioning System With Demand Response
,”
Energy Build.
,
259
, p.
111903
.10.1016/j.enbuild.2022.111903
41.
Lin
,
A.
,
Lei
,
S.
,
Keskar
,
A.
,
Hiskens
,
I.
,
Johnson
,
J.
,
Mathieu
,
J.
,
Kennedy
,
T.
,
et al
.,
2023
, “
Shifdr: Sub-Metered HVAC Implemented for Demand Response - Michigan Buildings Dataset
,” accessed May 2023, https://deepblue.lib.umich.edu/data/collections/vh53ww273?locale=en
42.
Beil
,
I.
,
Hiskens
,
I.
, and
Backhaus
,
S.
,
2015
, “
Round-Trip Efficiency of Fast Demand Response in a Large Commercial Air Conditioner
,”
Energy Build.
,
97
, pp.
47
55
.10.1016/j.enbuild.2015.03.028
43.
Wetter
,
M.
,
Zuo
,
W.
,
Nouidui
,
T. S.
, and
Pang
,
X.
,
2014
, “
Modelica Buildings Library
,” accessed Sep. 2021.10.1080/19401493.2013.765506
44.
Janis
,
R. R.
, and
Tao
,
W. K.
,
2009
,
Mechanical and Electrical Systems in Buildings
,
Pearson Prentice Hall Upper
,
Saddle River, NJ
.
45.
Liu
,
J.
,
Yin
,
R.
,
Pritoni
,
M.
,
Piette
,
M. A.
, and
Neukomm
,
M.
,
2020
, “
Developing and Evaluating Metrics for Demand Flexibility in Buildings: Comparing Simulations and Field Data
,”
ACEEE Summer Study Energy Efficiency in Buildings
, pp. 12-267–12-280.https://escholarship.org/content/qt2d93p636/qt2d93p636_noSplash_dbebdf318f8a7f1c7f31c48d8ea691e8.pdf?t=qn6r9x
46.
Kim
,
J.
,
Trenbath
,
K.
,
Granderson
,
J.
,
Chen
,
Y.
,
Crowe
,
E.
,
Reeve
,
H.
,
Newman
,
S.
, and
Ehrlich
,
P.
,
2021
, “
Research Challenges and Directions in HVAC Fault Prevalence
,”
Sci. Technol. Built Environ.
,
27
(
5
), pp.
624
640
.10.1080/23744731.2021.1898243
47.
de Chalendar
,
J. A.
,
Keskar
,
A.
,
Johnson
,
J. X.
, and
Mathieu
,
J. L.
,
2023
, “
Living Laboratories Can and Should Play a Greater Role to Unlock Flexibility in U.S. Commercial Buildings
,”
Joule
(Accepted).10.1016/j.joule.2023.11.009
You do not currently have access to this content.