Abstract

We present a physics-inspired input/output predictor of lithium-ion batteries (LiBs) for online state-of-charge (SOC) prediction. The complex electrochemical behavior of batteries results in nonlinear and high-dimensional dynamics. Accurate SOC prediction is paramount for increased performance, improved operational safety, and extended longevity of LiBs. The battery's internal parameters are cell-dependent and change with operating conditions and battery health variations. We present a data-driven solution to discover governing equations pertaining to SOC dynamics from battery operando measurements. Our approach relaxes the need for detailed knowledge of the battery's composition while maintaining prediction fidelity. The predictor consists of a library of candidate terms and a set of coefficients found via a sparsity-promoting algorithm. The library was enhanced with explicit physics-inspired terms to improve the predictor's interpretability and generalizability. Further, we developed a Monte Carlo search of additional nonlinear terms to efficiently explore the high-dimensional search space and improve the characterization of highly nonlinear behaviors. Also, we developed a hyperparameter autotuning approach for identifying optimal coefficients that balance accuracy and complexity. The resulting SOC predictor achieved high predictive performance scores (RMSE) of 2.2×106 and 4.8×104, respectively, for training and validation on experimental results corresponding to a stochastic drive cycle. Furthermore, the predictor achieved an RMSE of 8.5×104 on unseen battery measurements corresponding to the standard US06 drive cycle, further showcasing the adaptability of the predictor and the enhanced modeling approach to new conditions.

References

1.
Zhang
,
L.
,
Li
,
K.
,
Du
,
D.
,
Zhu
,
C.
, and
Zheng
,
M.
,
2019
, “
A Sparse Least Squares Support Vector Machine Used for SOC Estimation of Li-Ion Batteries
,”
IFAC-PapersOnLine
,
52
(
11
), pp.
256
261
.10.1016/j.ifacol.2019.09.150
2.
Park
,
S.
,
Zhang
,
D.
,
Klein
,
R.
, and
Moura
,
S.
,
2021
, “
Estimation of Cyclable Lithium for Li-Ion Battery State-of-Health Monitoring
,”
Proceedings of the 2021 American Control Conference (ACC)
,
New Orleans, LA
, May 25–28, pp.
3094
3101
.10.23919/ACC50511.2021.9482841
3.
Forman
,
J. C.
,
Moura
,
S. J.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2012
, “
Genetic Identification and Fisher Identifiability Analysis of the Doyle–Fuller–Newman Model From Experimental Cycling of a LiFePO4 Cell
,”
J. Power Sources
,
210
, pp.
263
275
.10.1016/j.jpowsour.2012.03.009
4.
Sulzer
,
V.
,
Marquis
,
S. G.
,
Timms
,
R.
,
Robinson
,
M.
, and
Chapman
,
S. J.
,
2021
, “
Python Battery Mathematical Modelling (PyBaMM)
,”
J. Open Res. Software
,
9
(
1
), p.
14
.10.5334/jors.309
5.
Zhao
,
R.
,
Kollmeyer
,
P. J.
,
Lorenz
,
R. D.
, and
Jahns
,
T. M.
,
2019
, “
A Compact Methodology Via a Recurrent Neural Network for Accurate Equivalent Circuit Type Modeling of Lithium-Ion Batteries
,”
IEEE Trans. Ind. Appl.
,
55
(
2
), pp.
1922
1931
.10.1109/TIA.2018.2874588
6.
Zhang
,
W.
,
Ahmed
,
R.
, and
Habibi
,
S.
,
2022
, “
The Effects of Test Profile on Lithium-Ion Battery Equivalent-Circuit Model Parameterization Accuracy
,”
Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo (ITEC)
,
Anaheim, CA
, June 15–17, pp.
119
124
.10.1109/ITEC53557.2022.9814019
7.
Tran
,
M.-K.
,
Mevawala
,
A.
,
Panchal
,
S.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2020
, “
Effect of Integrating the Hysteresis Component to the Equivalent Circuit Model of Lithium-Ion Battery for Dynamic and Non-Dynamic Applications
,”
J. Energy Storage
,
32
, p.
101785
.10.1016/j.est.2020.101785
8.
Koga
,
S.
,
Camacho-Solorio
,
L.
, and
Krstic
,
M.
,
2021
, “
State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
4
), p.
041004
.10.1115/1.4048779
9.
Natella
,
D.
,
Onori
,
S.
, and
Vasca
,
F.
,
2023
, “
A Co-Estimation Framework for State of Charge and Parameters of Lithium-Ion Battery With Robustness to Aging and Usage Conditions
,”
IEEE Trans. Ind. Electron.
,
70
(
6
), pp.
5760
5770
.10.1109/TIE.2022.3194576
10.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
, and
Emadi
,
A.
,
2018
, “
State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
, pp.
242
255
.10.1016/j.jpowsour.2018.06.104
11.
Vidal
,
C.
,
Malysz
,
P.
,
Naguib
,
M.
,
Emadi
,
A.
, and
Kollmeyer
,
P. J.
,
2022
, “
Estimating Battery State of Charge Using Recurrent and Non-Recurrent Neural Networks
,”
J. Energy Storage
,
47
, p.
103660
.10.1016/j.est.2021.103660
12.
Tu
,
H.
,
Moura
,
S.
, and
Fang
,
H.
,
2021
, “
Integrating Electrochemical Modeling With Machine Learning for Lithium-Ion Batteries
,”
Proceedings of the 2021 American Control Conference (ACC)
,
New Orleans, LA
, May 25–28, pp.
4401
4407
.10.23919/ACC50511.2021.9482997
13.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
14.
Thomas
,
K. E.
,
Newman
,
J.
, and
Darling
,
R. M.
,
2002
, “
Mathematical Modeling of Lithium Batteries
,”
Advances in Lithium-Ion Batteries
,
Springer
,
Boston, MA
, pp.
345
392
.
15.
Chen
,
C.-H.
,
Planella
,
F. B.
,
O'regan
,
K.
,
Gastol
,
D.
,
Widanage
,
W. D.
, and
Kendrick
,
E.
,
2020
, “
Development of Experimental Techniques for Parameterization of Multi-Scale Lithium-Ion Battery Models
,”
J. Electrochem. Soc.
,
167
(
8
), p.
080534
.10.1149/1945-7111/ab9050
16.
Xing
,
Y.
,
He
,
W.
,
Pecht
,
M.
, and
Tsui
,
K. L.
,
2014
, “
State of Charge Estimation of Lithium-Ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures
,”
Appl. Energy
,
113
, pp.
106
115
.10.1016/j.apenergy.2013.07.008
17.
Weng
,
C.
,
Sun
,
J.
, and
Peng
,
H.
,
2014
, “
A Unified Open-Circuit-Voltage Model of Lithium-Ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring
,”
J. Power Sources
,
258
, pp.
228
237
.10.1016/j.jpowsour.2014.02.026
18.
Zheng
,
F.
,
Xing
,
Y.
,
Jiang
,
J.
,
Sun
,
B.
,
Kim
,
J.
, and
Pecht
,
M.
,
2016
, “
Influence of Different Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
183
, pp.
513
525
.10.1016/j.apenergy.2016.09.010
19.
Ng
,
K. S.
,
Moo
,
C.-S.
,
Chen
,
Y.-P.
, and
Hsieh
,
Y.-C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.10.1016/j.apenergy.2008.11.021
20.
Nugroho
,
A.
,
Rijanto
,
E.
,
Wijay
,
F. D.
, and
Nugroho
,
P.
,
2015
, “
Battery State of Charge Estimation by Using a Combination of Coulomb Counting and Dynamic Model With Adjusted Gain
,”
Proceedings of the 2015 International Conference on Sustainable Energy Engineering and Application (ICSEEA)
,
Bandung, Indonesia
, Oct. 5–7, pp.
54
58
.10.1109/ICSEEA.2015.7380745
21.
Leksono
,
E.
,
Haq
,
I. N.
,
Iqbal
,
M.
, and
Soelami
,
F. N.
,
2013
, “
State of Charge (SoC) Estimation on LiFePO4 Battery Module Using Coulomb Counting Methods With Modified Peukert
,”
Proceedings of the 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T)
,
Bandung, Indonesia
, Nov. 26–28, pp.
1
4
.
22.
Ghoulam
,
Y.
,
Mesbahi
,
T.
,
Wilson
,
P.
,
Durand
,
S.
,
Lewis
,
A.
,
Lallement
,
C.
, and
Vagg
,
C.
,
2022
, “
Lithium-Ion Battery Parameter Identification for Hybrid and Electric Vehicles Using Drive Cycle Data
,”
Energies
,
15
(
11
), p.
4005
.10.3390/en15114005
23.
Rzepka
,
B.
,
Bischof
,
S.
, and
Blank
,
T.
,
2021
, “
Implementing an Extended Kalman Filter for SoC Estimation of a Li-Ion Battery With Hysteresis: A Step-by-Step Guide
,”
Energies
,
14
(
13
), p.
3733
.10.3390/en14133733
24.
Pei
,
L.
,
Lu
,
R.
, and
Zhu
,
C.
,
2013
, “
Relaxation Model of the Open-Circuit Voltage for State-of-Charge Estimation in Lithium-Ion Batteries
,”
IET Electr. Syst. Transp.
,
3
(
4
), pp.
112
117
.10.1049/iet-est.2013.0020
25.
Cui
,
Z.
,
Kang
,
L.
,
Li
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
A Combined State-of-Charge Estimation Method for Lithium-Ion Battery Using an Improved BGRU Network and UKF
,”
Energy
,
259
, p.
124933
.10.1016/j.energy.2022.124933
26.
Jiang
,
C.
,
Wang
,
S.
,
Wu
,
B.
,
Fernandez
,
C.
,
Xiong
,
X.
, and
Coffie-Ken
,
J.
,
2021
, “
A State-of-Charge Estimation Method of the Power Lithium-Ion Battery in Complex Conditions Based on Adaptive Square Root Extended Kalman Filter
,”
Energy
,
219
, p.
119603
.10.1016/j.energy.2020.119603
27.
Tu
,
H.
,
Moura
,
S.
,
Wang
,
Y.
, and
Fang
,
H.
,
2023
, “
Integrating Physics-Based Modeling With Machine Learning for Lithium-Ion Batteries
,”
Appl. Energy
,
329
, p.
120289
.10.1016/j.apenergy.2022.120289
28.
Hu
,
X.
,
Li
,
S. E.
, and
Yang
,
Y.
,
2016
, “
Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles
,”
IEEE Trans. Transp. Electrif.
,
2
(
2
), pp.
140
149
.10.1109/TTE.2015.2512237
29.
Jeong
,
Y.-M.
,
Cho
,
Y.-K.
,
Ahn
,
J.-H.
,
Ryu
,
S.-H.
, and
Lee
,
B.-K.
,
2014
, “
Enhanced Coulomb Counting Method With Adaptive SOC Reset Time for Estimating OCV
,”
Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE)
,
Pittsburgh, PA
, Sept. 14–18, pp.
1313
1318
.10.1109/ECCE.2014.6953989
30.
Gismero
,
A.
,
Schaltz
,
E.
, and
Stroe
,
D.-I.
,
2020
, “
Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage
,”
Energies
,
13
(
7
), p.
1811
.10.3390/en13071811
31.
Baccouche
,
I.
,
Jemmali
,
S.
,
Mlayah
,
A.
,
Manai
,
B.
, and
Amara
,
N. E. B.
,
2018
, “
Implementation of an Improved Coulomb-Counting Algorithm Based on a Piecewise SOC-OCV Relationship for SOC Estimation of Li-Ion Battery
,”
Int. J. Renewable Energy Res. (IJRER)
,
8
(
1
), pp.
178
187
.10.20508/ijrer.v8i1.6686.g7292
32.
Soudbakhsh
,
D.
,
Annaswamy
,
A. M.
,
Wang
,
Y.
,
Brunton
,
S. L.
,
Gaudio
,
J.
,
Hussain
,
H.
,
Vrabie
,
D.
,
Drgona
,
J.
, and
Filev
,
D.
,
2023
, “
Data-Driven Control: Theory and Applications
,”
Proceedings of the 2023 American Control Conference (ACC)
,
San Diego, CA
, May 31–June 2, pp.
1922
1939
.10.23919/ACC55779.2023.10156081
33.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Sparse Identification of Nonlinear Dynamics With Control (SINDYc)
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
710
715
.10.1016/j.ifacol.2016.10.249
34.
L'Erario
,
G.
,
Fiorio
,
L.
,
Nava
,
G.
,
Bergonti
,
F.
,
Mohamed
,
H. A. O.
,
Benenati
,
E.
,
Traversaro
,
S.
, and
Pucci
,
D.
,
2020
, “
Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2070
2077
.10.1109/LRA.2020.2970572
35.
Li
,
J.
,
Sun
,
G.
,
Zhao
,
G.
, and
Li-Wei
,
H. L.
,
2020
, “
Robust Low-Rank Discovery of Data-Driven Partial Differential Equations
,”
Proc. AAAI Conf. Artif. Intell.
,
34
(
1
), pp.
767
774
.10.1609/aaai.v34i01.5420
36.
Rodriguez
,
R.
,
Ahmadzadeh
,
O.
,
Wang
,
Y.
, and
Soudbakhsh
,
D.
,
2023
, “
Discovering Governing Equations of Li-Ion Batteries Pertaining State of Charge Using Input-Output Data
,”
Proceedings of the 2023 American Control Conference (ACC)
,
San Diego, CA
, May 31–June 2, pp.
3081
3086
.10.23919/ACC55779.2023.10156114
37.
Rudy
,
S.
,
Alla
,
A.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
, “
Data-Driven Identification of Parametric Partial Differential Equations
,”
SIAM J. Appl. Dyn. Syst.
,
18
(
2
), pp.
643
660
.10.1137/18M1191944
38.
Ahmadzadeh
,
O.
,
Rodriguez
,
R.
, and
Soudbakhsh
,
D.
,
2022
, “
Modeling of Li-Ion Batteries for Real-Time Analysis and Control: A Data-Driven Approach
,”
Proceedings of the 2022 American Control Conference (ACC)
,
Atlanta, GA
, June 8–10, pp.
392
397
.10.23919/ACC53348.2022.9867616
39.
Derakhshan
,
M.
,
Sahraei
,
E.
, and
Soudbakhsh
,
D.
,
2022
, “
Detecting Mechanical Indentation From the Time Constants of Li-Ion Batteries
,”
Cell Rep. Phys. Sci.
,
3
(
11
), p.
101102
.10.1016/j.xcrp.2022.101102
40.
Luder
,
D.
,
Caliandro
,
P.
, and
Vezzini
,
A.
,
2020
, “
Enhanced Physics-Based Models for State Estimation of Li-Ion Batteries
,”
COMSOL Conference 2020
, Europe
.https://www.comsol.com/paper/enhanced-physics-based-models-for-state-estimation-of-li-ion-batteries-95171
41.
Reniers
,
J. M.
,
Mulder
,
G.
, and
Howey
,
D. A.
,
2019
, “
Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3189
A3200
.10.1149/2.0281914jes
42.
Kulkarni
,
C. S.
,
Gupta
,
A.
, and
Lermusiaux
,
P. F.
,
2020
, “
Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
,”
Proceedings of the 3rd International Conference on Dynamic Data Driven Application Systems
,
Boston, MA
, Oct. 2–4, pp.
208
216
.
43.
Fasel
,
U.
,
Kutz
,
J. N.
,
Brunton
,
B. W.
, and
Brunton
,
S. L.
,
2022
, “
Ensemble-SINDy: Robust Sparse Model Discovery in the Low-Data, High-Noise Limit, With Active Learning and Control
,”
Proc. R. Soc. A
,
478
(
2260
), p.
20210904
.10.1098/rspa.2021.0904
44.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
45.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
2
), pp.
281
305
.https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
46.
Ahmadzadeh
,
O.
,
Wang
,
Y.
, and
Soudbakhsh
,
D.
,
2023
, “
Sparse Modeling of Energy Storage Systems in the Presence of Noise
,” IFAC-Papers OnLine (in press).
47.
Jakubovitz
,
D.
,
Giryes
,
R.
, and
Rodrigues
,
M. R.
,
2019
, “
Generalization Error in Deep Learning
,”
Compressed Sensing and Its Applications: Third International MATHEON Conference 2017
,
H.
Boche
,
G.
Caire
,
R.
Calderbank
,
G.
Kutyniok
,
R.
Mathar
,
P.
Petersen
(eds.),
Birkhäuser
,
Cham
, pp.
153
193
.
48.
Shawki
,
N.
,
Nunez
,
R. R.
,
Obeid
,
I.
, and
Picone
,
J.
,
2021
, “
On Automating Hyperparameter Optimization for Deep Learning Applications
,”
Proceedings of the 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
,
Philadelphia, PA
, Dec. 4–4, pp.
1
7
.10.1109/SPMB52430.2021.9672266
49.
Mackay
,
M.
,
Vicol
,
P.
,
Lorraine
,
J.
,
Duvenaud
,
D.
, and
Grosse
,
R.
,
2018
, “
Self-Tuning Networks: Bilevel Optimization of Hyperparameters Using Structured Best-Response Functions
,”
International Conference on Learning Representations
, New Orleans, LA, p.
09
.
You do not currently have access to this content.