Abstract

Symbolic time series analysis (STSA) plays an important role in the investigation of continuously evolving dynamical systems, where the capability to interpret the joint effects of multiple sensor signals is essential for adequate representation of the embedded knowledge. This technical brief develops and validates, by simulation, an STSA-based algorithm to make timely decisions on dynamical systems for information fusion and pattern classification from ensembles of multisensor time series data. In this context, one of the most commonly used methods has been neural networks (NN) in their various configurations; however, these NN-based methods may require large-volume data and prolonged computational time for training. An alternative feasible method is the STSA-based probabilistic finite state automata (PFSA), which has been shown in recent literature to require significantly less training data and to be much faster than NN for training and, to some extent, for testing. This technical brief reports a modification of the current PFSA methods to accommodate (possibly heterogeneous and not necessarily tightly synchronized) multisensor data fusion and (supervised learning-based) pattern classification in real-time. Efficacy of the proposed method is demonstrated by fusion of time series of position and velocity sensor data, generated from a simulation model of the forced Duffing equation.

References

1.
Murphy
,
K.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
The MIT Press
,
Cambridge, MA
.
2.
Mohandes
,
S. R.
,
Zhang
,
X.
, and
Mahdiyar
,
A.
,
2019
, “
A Comprehensive Review on the Application of Artificial Neural Networks in Building Energy Analysis
,”
Neurocomputing
,
340
, pp.
55
75
.10.1016/j.neucom.2019.02.040
3.
Sherstinsky
,
A.
,
2020
, “
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
,”
Phys. D: Nonlinear Phenom.
,
404
, p.
132306
.10.1016/j.physd.2019.132306
4.
Boullé
,
N.
,
Dallas
,
V.
,
Nakatsukasa
,
Y.
, and
Samaddar
,
D.
,
2020
, “
Classification of Chaotic Time Series With Deep Learning
,”
Phys. D: Nonlinear Phenom.
,
403
, p.
132261
.10.1016/j.physd.2019.132261
5.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2022
, “
Thresholdless Classification of Chaotic Dynamics and Combustion Instability Via Probabilistic Finite State Automata
,”
Mech. Syst. Signal Process.
,
164
, p.
108213
.10.1016/j.ymssp.2021.108213
6.
Bhattacharya
,
C.
, and
Ray
,
A.
,
2021
, “
Transfer Learning for Detection of Combustion Instability Via Symbolic Time Series Analysis
,”
ASME J. Dyn. Syst., Meas., Contr.
,
143
(
10
), p.
101002
.10.1115/1.4050847
7.
Trivedi
,
P.
, and
Zimmer
,
D.
,
2006
, “
Copula Modeling: An Introduction for Practitioners
,”
Foundations Trends Econometrics
,
1
(
1
), pp.
1
111
.10.1561/0800000005
8.
Nelson
,
R.
,
2006
,
An Introduction to Copulas
, 2nd ed.,
Springer
,
New York
.
9.
Iyengar
,
S.
,
Varshney
,
P.
, and
Damarla
,
T.
,
2011
, “
A Parametric Copula-Based Framework for Hypothesis Testing Using Heterogeneous Data
,”
IEEE Trans. Signal Process.
,
59
(
5
), pp.
2308
2319
.10.1109/TSP.2011.2105483
10.
Cover
,
T.
, and
Thomas
,
J.
,
2006
,
Elements of Information Theory
, 2nd ed.,
Hoboken, NJ
.
11.
Sarkar
,
S.
,
Chakravarthy
,
S.
,
Ramanan
,
V.
, and
Ray
,
A.
,
2016
, “
Dynamic Data-Driven Prediction of Instability in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
235
253
.10.1177/1756827716642091
12.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Signal Process.
,
104
, pp.
105
119
.10.1016/j.sigpro.2014.03.045
13.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
14.
Thompson
,
J.
, and
Stewart
,
H.
,
2002
,
Nonlinear Dynamics and Chaos
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
15.
Daw
,
C. S.
,
Finney
,
C. E. A.
, and
Tracy
,
E. R.
, February
2003
, “
A Review of Symbolic Analysis of Experimental Data
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
915
930
.10.1063/1.1531823
16.
Beim Graben
,
P.
,
2001
, “
Estimating and Improving the Signal-to-Noise Ratio of Time Series by Symbolic Dynamics
,”
Phys. Rev. E
,
64
(
5
), p.
051104
.10.1103/PhysRevE.64.051104
17.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
18.
Subbu
,
A.
, and
Ray
,
A.
,
2008
, “
Space Partitioning Via Hilbert Transform for Symbolic Time Series Analysis
,”
Appl. Phys. Lett.
,
92
(
8
), p.
084107
.10.1063/1.2883958
19.
Berman
,
A.
, and
Plemmons
,
R.
,
1994
,
Nonnegative Matrices in the Mathematical Sciences
,
SIAM Press
,
Philadelphia, PA
.
20.
Ghalyan
,
N. F.
, and
Ray
,
A.
,
2021
, “
Measure Invariance of Ergodic Symbolic Systems for Low-Delay Detection of Anomalous Events
,”
Mech. Syst. Signal Process.
,
159
, p.
107746
.10.1016/j.ymssp.2021.107746
21.
Ray
,
A.
, and
Luck
,
R.
,
1991
, “
An Introduction to Sensor Signal Validation in Redundant Measurement Systems
,”
IEEE Control Syst. Mag.
,
11
(
2
), pp.
44
49
.https://ieeexplore.ieee.org/document/67675
22.
Burden
,
R.
, and
Faires
,
J.
,
2010
,
Numerical Analysis
,
Cengage Learning
,
New Delhi, India
.
23.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.