Abstract

Conventional emulated damping, in which velocity feedback is employed in combination with motor current control to emulate damping, is used in a number of mechatronic applications. As known in the field, although such damping should be strictly passive, several implementation factors render this emulation nonpassive and subject to instability, especially with increasing damping ratios. This paper describes an alternative implementation of emulated damping that employs passive motor control, which does not draw energy from a battery or any other power source. The method is specifically described in the context of a brushless direct-current (BLDC) motor; an unique controller architecture is used along with a particular MOSFET switching scheme which employs only a subset of the standard BLDC motor driver and does not require electronic commutation. This paper employs analytical and experimental means to compare damping control with the described passive motor approach, relative to using a conventional BLDC motor control approach. Stability considerations for each scheme are discussed. Benchtop testing demonstrates the advantage of the passive control scheme in terms of providing smooth behavior, enhancing control robustness, preventing energy leaks, and providing accurate behavior. The special cases of unilateral and asymmetric behaviors (i.e., different damping command for each direction of rotation) are also considered.

References

1.
Lawrence
,
D. A.
,
1988
, “
Impedance Control Stability Properties in Common Implementations
,”
Proceedings of 1988 IEEE International Conference on Robotics and Automation
, Vol.
2
, Philadelphia, PA, Apr. 24–29, pp.1
1185
1190
.10.1109/ROBOT.1988.12222
2.
Colgate
,
J. E.
,
1988
, “
The Control of Dynamically Interacting Systems
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
3.
Colgate
,
J. E.
, and
Brown
,
J. M.
,
1994
, “
Factors Affecting the Z-Width of a Haptic Display
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
, Vol.
4
, San Diego, CA, May 8–13, pp.
3205
3210
.10.1109/ROBOT.1994.351077
4.
Gillespie
,
R. B.
, and
Cutkosky
,
M. R.
,
1996
, “
Stable User-Specific Haptic Rendering of the Virtual Wall
,”
ASME
Paper No. IMECE2000-2423.10.1115/IMECE2000-2423
5.
Diolaiti
,
N.
,
Niemeyer
,
G.
,
Barbagli
,
F.
, and
Salisbury
,
J. K.
,
2006
, “
Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects
,”
IEEE Trans. Robot.
,
22
(
2
), pp.
256
268
.10.1109/TRO.2005.862487
6.
Kronander
,
K.
, and
Billard
,
A.
,
2016
, “
Stability Considerations for Variable Impedance Control
,”
IEEE Trans. Robot.
,
32
(
5
), pp.
1298
1305
.10.1109/TRO.2016.2593492
7.
Vailati
,
L. G.
, and
Goldfarb
,
M.
,
2022
, “
On Using a Brushless DC Motor as a Passive Torque-Controllable Brake
,”
ASME J. Dyn. Syst. Meas. Control.
,
144
(
9
), p.
091001
.10.1115/1.4054733
8.
Andrysek
,
J.
, and
Chau
,
G.
,
2007
, “
An Electromechanical Swing-Phase-Controlled Prosthetic Knee Joint for Conversion of Physiological Energy to Electrical Energy: Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2276
2283
.10.1109/TBME.2007.908309
9.
Andrysek
,
J.
,
Liang
,
T.
, and
Steinnagel
,
B.
,
2009
, “
Evaluation of a Prosthetic Swing-Phase Controller With Electrical Power Generation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
4
), pp.
390
396
.10.1109/TNSRE.2009.2023292
10.
Tucker
,
M. R.
, and
Fite
,
K. B.
,
2010
, “
Mechanical Damping With Electrical Regeneration for a Powered Transfemoral Prosthesis
,”
ASME
Paper No. DETC2018-85234.10.1115/DETC2018-85234
11.
Awad
,
M. I.
,
Dehghani-Sanij
,
A. A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2016
, “
Motor Electrical Damping for Back-Drivable Prosthetic Knee
,”
11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th International Conference on Research and Education in Mechatronics
(
REM
), Compiegne, France, June 15–17, pp.
348
353
.10.1109/MECATRONICS.2016.7547167
12.
Mehling
,
J. S.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2005
, “
Increasing the Impedance Range of a Haptic Display by Adding Electrical Damping
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics Conference
, Pisa, Italy, Mar. 18–20, pp.
257
262
.10.1109/WHC.2005.79
13.
Srikanth
,
M. B.
,
Vasudevan
,
H.
, and
Muniyandi
,
M.
,
2008
, “
DC Motor Damping: A Strategy to Increase Passive Stiffness of Haptic Devices
,”
Haptics: Perception, Devices and Scenarios
,
M.
Ferre
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
53
62
.
14.
Radulescu
,
A.
,
Howard
,
M.
,
Braun
,
D. J.
, and
Vijayakumar
,
S.
,
2012
, “
Exploiting Variable Physical Damping in Rapid Movement Tasks
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Kaohsiung, Taiwan, July 11–14, pp.
141
148
.10.1109/AIM.2012.6265889
15.
Chen
,
C.
,
Chi
,
W.
, and
Cheng
,
M.
,
2011
, “
Regenerative Braking Control for Light Electric Vehicles
,”
IEEE Ninth International Conference on Power Electronics and Drive Systems
, Singapore, Dec. 5–8, pp.
631
636
.10.1109/PEDS.2011.6147317
16.
Nian
,
X.
,
Peng
,
F.
, and
Zhang
,
H.
,
2014
, “
Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor
,”
IEEE Trans. Ind. Electron.
,
61
(
10
), pp.
5798
5808
.10.1109/TIE.2014.2300059
17.
Naseri
,
F.
,
Farjah
,
E.
, and
Ghanbari
,
T.
,
2016
, “
An Efficient Regenerative Braking System Based on Battery/Supercapacitor for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles With BLDC Motor
,”
IEEE Trans. Veh. Technol.
,
66
(
5
), pp.
3724
3738
.10.1109/TVT.2016.2611655
18.
Colgate
,
J. E.
,
Stanley
,
M. C.
, and
Brown
,
J. M.
,
1995
, “
Issues in the Haptic Display of Tool Use
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
, Vol.
3
, Pittsburgh, PA, Aug. 5–9, pp.
140
145
.10.1109/IROS.1995.525875
19.
Thiele
,
J.
,
Westebbe
,
B.
,
Bellmann
,
M.
, and
Kraft
,
M.
,
2014
, “
Designs and Performance of Microprocessor-Controlled Knee Joints
,”
Biomed. Tech. Eng.
,
59
(
1
), pp.
65
77
.10.1515/bmt-2013-0069
20.
Arelekatti
,
V. N. M.
, and
Winter
,
A. G. V.
,
2015
, “
Design of a Fully Passive Prosthetic Knee Mechanism for Transfemoral Amputees in India
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Singapore, Aug. 11–14, pp.
350
356
.10.1109/ICORR.2015.7281224
21.
Thiele
,
J.
,
Schöllig
,
C.
,
Bellmann
,
M.
, and
Kraft
,
M.
,
2019
, “
Designs and Performance of Three New Microprocessor-Controlled Knee Joints
,”
Biomed. Eng. Biomed. Tech.
,
64
(
1
), pp.
119
126
.10.1515/bmt-2017-0053
22.
Lee
,
J. T.
,
Bartlett
,
H. L.
, and
Goldfarb
,
M.
,
2020
, “
Design of a Semipowered Stance-Control Swing-Assist Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
175
184
.10.1109/TMECH.2019.2952084
23.
Bartlett
,
H. L.
,
King
,
S. T.
,
Goldfarb
,
M.
, and
Lawson
,
B. E.
,
2022
, “
Design and Assist-As-Needed Control of a Lightly Powered Prosthetic Knee
,”
IEEE Trans. Med. Robot. Bionics
,
4
(
2
), pp.
490
501
.10.1109/TMRB.2022.3161068
24.
Silveira
,
M.
,
Pontes
,
B. R.
, and
Balthazar
,
J. M.
,
2014
, “
Use of Nonlinear Asymmetrical Shock Absorber to Improve Comfort on Passenger Vehicles
,”
J. Sound Vib.
,
333
(
7
), pp.
2114
2129
.10.1016/j.jsv.2013.12.001
25.
Soliman
,
A.
, and
Kaldas
,
M.
,
2021
, “
Semi-Active Suspension Systems From Research to Mass-Market – A Review
,”
J. Low Freq. Noise Vib. Act. Control
,
40
(
2
), pp.
1005
1023
.10.1177/1461348419876392
26.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
1
7
.10.1115/1.3140702
27.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part II—Implementation
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
8
16
.10.1115/1.3140713
28.
Zenkov
,
D. V.
,
Bloch
,
A. M.
, and
Marsden
,
J. E.
,
2002
, “
The Lyapunov–Malkin Theorem and Stabilization of the Unicycle With Rider
,”
Syst. Control Lett.
,
45
(
4
), pp.
293
302
.10.1016/S0167-6911(01)00187-6
29.
Seth
,
B.
, and
Flowers
,
W. C.
,
1990
, “
Generalized Actuator Concept for the Study of the Efficiency of Energetic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
233
238
.10.1115/1.2896130
30.
Heinzmann
,
R. K.
,
Seth
,
B.
, and
Turi
,
J.
,
1992
, “
Application of a Generalized Actuator Model to the Study of Energy Regeneration Control Strategies
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
462
467
.10.1115/1.2897369
You do not currently have access to this content.