Abstract

Robotic landing gear (RLG) for rotorcraft improves performance in landing on sloped uneven terrain, unprepared areas, and ship decks. The interaction between the feet of the RLG and the landing surface are pivotal to a successful landing event. Slipping or bouncing of the feet can lead to a failed landing and a catastrophic accident. Proposed herein is the use of locking mechanisms on the RLG feet in order to eliminate landing gear slip and bounce during the landing event. Through the use of a comprehensive multibody dynamic simulation, locking mechanisms on the RLG feet are shown to eliminate landing event failures that can occur with nonlocking landing gear configurations, at the expense of a moderate increase in landing gear loads during a landing event. Results indicate that landing event failures are eliminated even in the situation where some feet-locking mechanisms are inoperable or break away. Furthermore, RLG with feet locking mechanisms permit the reduction or elimination of the need for active control of the RLG legs. The results herein give guidance to the development of integrated RLG with locking mechanisms.

References

1.
Manivannan
,
V.
,
Langley
,
J. P.
,
Costello
,
M.
, and
Ruzzene
,
M.
,
2013
, “
Rotorcraft Slope Landings With Articulated Landing Gear
,”
AIAA
Paper No. 2013-5160.10.2514/6.2013-5160
2.
León
,
B. L.
,
Rimoli
,
J. J.
, and
Di Leo
,
C. V.
,
2021
, “
Rotorcraft Dynamic Platform Landings Using Robotic Landing Gear
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
11
), p. 111006.10.1115/1.4051751
3.
Kim
,
D.
, and
Costello
,
M.
,
2016
, “
Virtual Model Control of Rotorcraft With Articulated Landing Gear for Shipboard Landing
,”
AIAA
Paper No. 2016-1863.10.2514/6.2016-1863
4.
Butler
,
C.
, and
Costello
,
M.
,
2021
, “
Vehicle Design in Aerial Robotics
,”
Curr. Rob. Rep.
,
2
(
4
), pp.
415
426
.10.1007/s43154-021-00069-y
5.
León
,
B.
,
Rimoli
,
J. J.
, and
Di Leo
,
C. V.
,
2021
, “
Ground and Flight Tests of an Unmanned Rotorcraft With Cable-Driven Robotic Landing Gear
,”
J. Am. Helicopter Soc.
,
66
(
4
), pp.
1
10
.10.4050/JAHS.66.042003
6.
Stolz
,
B.
,
Brödermann
,
T.
,
Castiello
,
E.
,
Englberger
,
G.
,
Erne
,
D.
,
Gasser
,
J.
,
Hayoz
,
E.
,
et al.
,
2018
, “
An Adaptive Landing Gear for Extending the Operational Range of Helicopters
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Madrid, Spain, Oct. 1–5, pp.
1757
1763
.10.1109/IROS.2018.8594062
7.
Boix
,
D. M.
,
Goh
,
K.
, and
McWhinnie
,
J.
,
2017
, “
Modelling and Control of Helicopter Robotic Landing Gear for Uneven Ground Conditions
,” 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (
RED-UAS
),
IEEE
, Linköping, Sweden, Oct. 3–5, pp.
60
65
.10.1109/RED-UAS.2017.8101644
8.
Tang
,
H.
,
Zhang
,
D.
, and
Gan
,
Z.
,
2020
, “
Control System for Vertical Take-Off and Landing Vehicle's Adaptive Landing Based on Multi-Sensor Data Fusion
,”
Sensors
,
20
(
16
), p.
4411
.10.3390/s20164411
9.
León
,
B.
,
Rimoli
,
J. J.
, and
Di Leo
,
C. V.
,
2019
, “
Elastomer Encapsulated Pressure Sensor With Engineered Air Cavity for Force Sensing
,”
IEEE Sens. J.
,
19
(
16
), pp.
6628
6643
.10.1109/JSEN.2019.2912515
10.
Yashin
,
G.
,
Egorov
,
A.
,
Darush
,
Z.
,
Zherdev
,
N.
, and
Tsetserukou
,
D.
,
2020
, “
LocoGear: Locomotion Analysis of Robotic Landing Gear for Multicopters
,”
IEEE J. Miniaturization Air Space Syst.
,
1
(
2
), pp.
138
147
.10.1109/JMASS.2020.3015525
11.
Paul
,
H.
,
Miyazaki
,
R.
,
Ladig
,
R.
, and
Shimonomura
,
K.
,
2019
, “
Landing of a Multirotor Aerial Vehicle on an Uneven Surface Using Multiple on-Board Manipulators
,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Macau, China, Nov. 3-8, pp.
1926
1933
.10.1109/IROS40897.2019.8968529
12.
Federal Aviation Administration,
2012
,
Helicopter Flying Handbook
,
Federal Aviation Administration, U.S. Department of Transportation, accessed
Apr. 16,
2023
, https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook
13.
Myeong
,
W. C.
,
Jung
,
K. Y.
,
Jung
,
S. W.
,
Jung
,
Y.
, and
Myung
,
H.
,
2015
, “
Development of a Drone-Type Wall-Sticking and Climbing Robot
,” 12th International Conference on Ubiquitous Robots and Ambient Intelligence (
URAI
),
IEEE
, Goyang City, Korea, Oct. 28–30, pp.
386
389
.10.1109/URAI.2015.7358881
14.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Johnson
,
C. J.
,
Kallman
,
J. C.
,
Simpson
,
J. A.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2011
, “
Avian-Inspired Passive Perching Mechanism for Robotic Rotorcraft
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, IEEE, San Francisco, CA, Sept. 25–30, pp.
4975
4980
.10.1109/IROS.2011.6094487
15.
Tai
,
K.
,
El-Sayed
,
A.-R.
,
Shahriari
,
M.
,
Biglarbegian
,
M.
, and
Mahmud
,
S.
,
2016
, “
State of the Art Robotic Grippers and Applications
,”
Robotics
,
5
(
2
), p.
11
.10.3390/robotics5020011
16.
Tavakoli
,
M.
,
Viegas
,
C.
,
Romao
,
J. C.
,
Neto
,
P.
, and
de Almeida
,
A. T.
,
2015
, “
Switchable Magnets for Robotics Applications
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), IEEE, Hamburg, Germany, Sept. 28–Oct. 2, pp.
4325
4330
.10.1109/IROS.2015.7353990
17.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.10.1002/adma.201707035
18.
Kiefer
,
J.
,
Ward
,
M.
, and
Costello
,
M.
,
2016
, “
Rotorcraft Hard Landing Mitigation Using Robotic Landing Gear
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031003
.10.1115/1.4032286
19.
Leylek
,
E.
,
Ward
,
M.
, and
Costello
,
M.
,
2012
, “
Flight Dynamic Simulation for Multibody Aircraft Configurations
,”
J. Guid., Control, Dyn.
,
35
(
6
), pp.
1828
1842
.10.2514/1.55858
20.
Etkin
,
B.
, and
Reid
,
L. D.
,
1959
,
Dynamics of Flight
, Vol.
2
,
Wiley
,
New York
.
21.
Goyal
,
S.
,
Pinson
,
E. N.
, and
Sinden
,
F. W.
,
1994
, “
Simulation of Dynamics of Interacting Rigid Bodies Including Friction I: General Problem and Contact Model
,”
Eng. Comput.
,
10
(
3
), pp.
162
174
.10.1007/BF01198742
22.
Military Advantage
,
2023
, “
MH-6 Little Bird
,” Military Advantage, accessed Apr. 16. 2023, https://www.military.com/equipment/mh-6-little-bird
23.
Applied Magnets
,
2023
, Strong Magnets 3 in x 3 in N42 Cylinder Neodymium Industrial Magnets, Applied Magnets, accessed Mar. 23, 2023, https://appliedmagnets.com/strong-magnets-3-in-x-3-in-n42-cylinder-neodymium-industrial-magnets/
You do not currently have access to this content.