Abstract

Diesel engines are crucial components of trainsets. Automated fault detection of diesel engines can play an important role for increasing reliability of passenger trains. In this research, vibration-based fuel injection fault detection of a high-power 12-cylinder trainset diesel engine is studied. Vibration signals are analyzed in frequency and time-frequency domains to obtain possible patterns of faults. Fast Fourier transform (FFT) and wavelet packet transform (WPT) of vibration signals are used to extract several uncorrelated features. These features are chosen to increase the ability of classifiers to separate healthy and faulty engine sides, automatically. Different classification methods including multilayer perception (MLP), support vector machines (SVM), K-nearest neighbor (KNN), and local linear model tree (LOLIMOT) are used to process captured features; these methods are utilized in both “Single-sensor condition monitoring” and “Classification and fault detection” sections. It is shown that KNN networks are practical tools in the proposed fault detection procedure. The main novelty of this work comes from introducing a rich feature-extraction method based on a combination of FFT and db4 features. In addition, the complexity of computations and average running-time decrease while classification accuracy in the fuel injection fault detection procedure increases.

References

1.
Jones
,
N. B.
, and
Li
,
Y.-H.
,
2000
, “
A Review of Condition Monitoring and Fault Diagnosis for Diesel Engines
,”
Tribotest
,
6
(
3
), pp.
267
291
.10.1002/tt.3020060305
2.
Traver
,
M. L.
,
Atkinson
,
R. J.
, and
Atkinson
,
C. M.
,
1999
, “
Neural Network-Based Diesel Engine Emissions Prediction Using in-Cylinder Combustion Pressure
,”
SAE
Paper No. 1999-01-1532.10.4271/1999-01-1532
3.
Li
,
Z.
,
Yan
,
X.
,
Yuan
,
C.
, and
Peng
,
Z.
,
2012
, “
Intelligent Fault Diagnosis Method for Marine Diesel Engines Using Instantaneous Angular Speed
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2413
2423
.10.1007/s12206-012-0621-2
4.
Assanis
,
D. N.
, and
Friedmann
,
F. A.
,
1993
, “
A Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers
,”
Int. Commun. Heat Mass Transfer
,
20
(
4
), pp.
459
468
.10.1016/0735-1933(93)90058-4
5.
Albarbar
,
A.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2010
, “
Diesel Engine Fuel Injection Monitoring Using Acoustic Measurements and Independent Component Analysis
,”
Measurements
,
43
(
10
), pp.
1376
1386
.10.1016/j.measurement.2010.08.003
6.
Jiang
,
K.
,
Cao
,
E.
, and
Wei
,
L.
,
2016
, “
NOx Sensor Ammonia Cross-Sensitivity Estimation With Adaptive Unscented Kalman Filter for Diesel-Engine Selective Catalytic Reduction Systems
,”
Fuel
,
165
, pp.
185
192
.10.1016/j.fuel.2015.10.019
7.
Wang
,
Y.
,
Zhang
,
F.
,
Cui
,
T.
, and
Zhou
,
J.
,
2016
, “
Fault Diagnosis for Manifold Absolute Pressure Sensor (MAP) of Diesel Engine Based on Elman Neural Network Observer
,”
Measurement and Fault Diagnosis
,
29
(
2
), pp.
386
395
.https://link.springer.com/article/10.3901%2FCJME.2015.1211.145
8.
Chen
,
J.
,
Randall
,
R. B.
, and
Peeters
,
B.
,
2016
, “
Advanced Diagnostic System for Piston Slap Faults in IC Engines, Based on the Non-Stationary Characteristics of the Vibration Signals
,”
Mech. Syst. Signal Process.
,
75
, pp.
434
454
.10.1016/j.ymssp.2015.12.023
9.
Dayong
,
N.
,
Changle
,
S.
,
Yongjun
,
G.
,
Zengmeng
,
Z.
, and
Jiaoyi
,
H.
,
2016
, “
Extraction of Fault Component From Abnormal Sound in Diesel Engines Using Acoustic Signals
,”
Mech. Syst. Signal Process.
,
75
, pp.
544
555
.10.1016/j.ymssp.2015.10.037
10.
Moosavian
,
A.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mirsalim
,
M.
,
Jafari
,
S. M.
, and
Sharghi
,
P.
,
2016
, “
Piston Scuffing Fault and Its Identification in an IC Engine by Vibration Analysis
,”
Appl. Acoust.
,
102
, pp.
40
48
.10.1016/j.apacoust.2015.09.002
11.
Taghizadeh-Alisaraei
,
A.
,
Ghobadian
,
B.
,
Tavakoli-Hashjin
,
T.
,
Mohtasebi
,
S. S.
,
Rezaei-Asl
,
A.
, and
Azadbakht
,
M.
,
2016
, “
Characterization of Engine's Combustion-Vibration Using Diesel and Biodiesel Fuel Blends by Time-Frequency Methods: A Case Study
,”
Renewable Energy
,
95
, pp.
422
432
.10.1016/j.renene.2016.04.054
12.
Zhou
,
J.
,
Qin
,
Y.
,
Kou
,
L.
,
Yuwono
,
M.
, and
Su
,
S.
,
2015
, “
Fault Detection of Rolling Bearing Based on FFT and Classification
,”
J. Adv. Mech. Des. Syst. Manuf.
,
9
(
5
), pp. 1–5.10.1299/jamdsm.2015jamdsm0056
13.
Liu
,
H.
,
Wang
,
J.
, and
Lu
,
C.
,
2013
, “
Rolling Bearing Fault Detection Based on the Teager Energy Operator and Elman Neural Network
,”
Math. Probl. Eng.
,
2013
, p. 498385.10.1155/2013/498385
14.
Qi
,
P.
,
Lezama
,
J.
,
Jovanovic
,
S.
, and
Schweitzer
,
P.
,
2014
, “
Adaptive Real-Time DWT-Based Method for Arc Fault Detection
,”
27th International Conference on Electrical Contacts
, Dresden, Germany, June 22–26 pp.
1
6
.https://ieeexplore.ieee.org/document/6857231
15.
Zabihi-Hesari
,
A.
,
Ansari-Rad
,
S.
,
Shirazi
,
F. A.
, and
Ayati
,
M.
,
2019
, “
Fault Detection and Diagnosis of a 12-Cylinder Trainset Diesel Engine Based on Vibration Signature Analysis and Neural Network
,”
Proc. Inst. Mech. Eng. Part C
,
233
(
6
), pp.
1910
1923
.10.1177/0954406218778313
16.
Shirazi
,
F. A.
,
Ayati
,
M.
,
Zabihi-Hesari
,
A.
, and
Ansari-Rad
,
S.
,
2018
, “
Fuel Injection Fault Detection in a Diesel Engine Based on Vibration Signature Analysis
,”
Fifth Iranian International NDT Conference
, Tehran, Iran, pp.
1
7
.https://www.researchgate.net/publication/332819554_Fuel_Injection_Fault_Detection_in_a_Diesel_Engine_Based_on_Vibration_Signature_Analysis
17.
Muralidharan
,
V.
, and
Sugumaran
,
V.
,
2016
, “
A Comparative Study Between Support Vector Machine (SVM) and Extreme Learning Machine (ELM) for Fault Detection in Pumps
,”
Indian J. Sci. Technol.
,
9
(
48
), pp.
1
8
.10.17485/ijst/2016/v9i48/107915
18.
Atoui
,
I.
,
Meradi
,
H.
,
Boulkroune
,
R.
, and
Saidi
,
R.
,
2013
, “
Fault Detection and Diagnosis in Rotating Machinery by Vibration Monitoring Using FFT and Wavelet Techniques
,”
Eighth International Workshop on Systems, Signal Processing and Their Applications (WoSSPA)
, Algiers, Algeria, May 12–15, pp.
401
406
.10.1109/WoSSPA.2013.6602399
19.
Reza Asadi Asad Abad
,
M.
,
Ahmadi
,
H.
,
Moosavian
,
A.
,
Khazaee
,
M.
,
Ranjbar Kohan
,
M.
, and
Mohammadi
,
M.
,
2013
, “
Discrete Wavelet Transform and Artificial Neural Network for Gearbox Fault Detection Based on Acoustic Signals
,”
J. Vibroeng.
,
15
(
1
), pp.
459
463
.https://jvejournals.com/article/14491
20.
Koley
,
E.
,
Verma
,
K.
, and
Ghosh
,
S.
,
2015
, “
An Improved Fault Detection Classification and Location Scheme Based on Wavelet Transform and Artificial Neural Network for Six Phase Transmission Line Using Single End Data Only
,”
Springerplus
,
4
(
1
), p.
551
.10.1186/s40064-015-1342-7
21.
Khajavi
,
M. N.
,
Nasiri
,
S.
, and
Eslami
,
A.
,
2014
, “
Combined Fault Detection and Classification of Internal Combustion Engine Using Neural Network
,”
J. Vibroeng.
,
16
(
8
), pp.
3912
3921
.https://www.jvejournals.com/article/15199/abs
22.
Ahmed
,
R.
,
El Sayed
,
M.
,
Gadsden
,
S. A.
,
Tjong
,
J.
, and
Habibi
,
S.
,
2015
, “
Automotive Internal-Combustion-Engine Fault Detection and Classification Using Artificial Neural Network Techniques
,”
IEEE Trans. Veh. Technol.
,
64
(
1
), pp.
21
33
.10.1109/TVT.2014.2317736
23.
Fernando
,
H.
, and
Surgenor
,
B.
,
2017
, “
An Unsupervised Artificial Neural Network Versus a Rule-Based Approach for Fault Detection and Identification in an Automated Assembly Machine
,”
Rob. Comput. Integr. Manuf.
,
43
, pp.
79
88
.10.1016/j.rcim.2015.11.006
24.
Bangalore
,
P.
, and
Tjernberg
,
L. B.
,
2015
, “
An Artificial Neural Network Approach for Early Fault Detection of Gearbox Bearings
,”
IEEE Trans. Smart Grid
,
6
(
2
), pp.
980
987
.10.1109/TSG.2014.2386305
25.
Rahnavard
,
M.
,
Ayati
,
M.
,
Yazdi
,
M. R. H.
, and
Mousavi
,
M.
,
2019
, “
Finite Time Estimation of Actuator Faults, States, and Aerodynamic Load of a Realistic Wind Turbine
,”
Renewable Energy
,
130
, pp.
256
267
.10.1016/j.renene.2018.06.053
26.
Rahnavard
,
M.
,
Ayati
,
M.
, and
Yazdi
,
M. R. H.
,
2019
, “
Robust Actuator and Sensor Fault Reconstruction of Wind Turbine Using Modified Sliding Mode Observer
,”
Trans. Inst. Meas. Control
,
41
(
6
), pp.
1504
1518
.10.1177/0142331218754620
27.
Zhang
,
K.
,
Du
,
K.
, and
Ju
,
Y.
,
2014
, “
Algorithm of Railway Turnout Fault Detection Based on PNN Neural Network
,”
Seventh International Symposium on Computational Intelligence and Design
, Hangzhou, China, Dec. 13–15, pp.
544
547
.10.1109/ISCID.2014.140
28.
Janssens
,
O.
,
Slavkovikj
,
V.
,
Vervisch
,
B.
,
Stockman
,
K.
,
Loccufier
,
M.
,
Verstockt
,
S.
,
de Walle
,
R.
, and
Van Hoecke
,
S.
,
2016
, “
Convolutional Neural Network Based Fault Detection for Rotating Machinery
,”
J. Sound Vib.
,
377
, pp.
331
345
.10.1016/j.jsv.2016.05.027
29.
González
,
J. P. N.
,
2018
, “
Vehicle Fault Detection and Diagnosis Combining an AANN and Multiclass SVM
,”
Int. J. Interact. Des. Manuf.
,
12
(
1
), pp.
273
279
.10.1007/s12008-017-0378-z
30.
Seryasat
,
O. R.
,
Habibi
,
M.
,
Ghane
,
M.
, and
Taherkhani
,
H.
,
2014
, “
Fault Detection of Rolling Bearings Using Discrete Wavelet Transform and Neural Network of SVM
,”
Adv. Environ. Biol.
, 8(6), pp.
2175
2184
.https://www.researchgate.net/publication/286272932_Fault_detection_of_rolling_bearings_using_discrete_wavelet_transform_and_neural_network_of_SVM
31.
Amir
,
R. B.
,
Gul
,
S. T.
, and
Khan
,
A. Q.
,
2016
, “
A Comparative Analysis of Classical and One Class SVM Classifiers for Machine Fault Detection Using Vibration Signals
,”
International Conference on Emerging Technologies (ICET)
, Islamabad, Pakistan, Oct. 18–19, pp.
1
6
.10.1109/ICET.2016.7813262
32.
Andre
,
A. B.
,
Beltrame
,
E.
, and
Wainer
,
J.
,
2013
, “
A Combination of Support Vector Machine and K-Nearest Neighbors for Machine Fault Detection
,”
Appl. Artif. Intell.
,
27
(
1
), pp.
36
49
.10.1080/08839514.2013.747370
33.
Moosavian
,
A.
,
Ahmadi
,
H.
,
Sakhaei
,
B.
, and
Labbafi
,
R.
,
2014
, “
Support Vector Machine and K-Nearest Neighbour for Unbalanced Fault Detection
,”
J. Qual. Maint. Eng.
, 20(
1
), pp.
65
75
.10.1108/JQME-04-2012-0016
34.
Chiang
,
L. H.
,
Russell
,
E. L.
, and
Braatz
,
R. D.
,
2000
, “
Fault Diagnosis in Chemical Processes Using Fisher Discriminant Analysis, Discriminant Partial Least Squares, and Principal Component Analysis
,”
Chemom. Intell. Lab. Syst.
,
50
(
2
), pp.
243
252
.10.1016/S0169-7439(99)00061-1
35.
Cerna
,
M.
, and
Harvey
,
A. F.
,
2000
, “
The Fundamentals of FFT-Based Signal Analysis and Measurement
,” National Instrument, Application Note 041.
36.
Hemmati
,
F.
,
Orfali
,
W.
, and
Gadala
,
M. S.
,
2016
, “
Roller Bearing Acoustic Signature Extraction by Wavelet Packet Transform, Applications in Fault Detection and Size Estimation
,”
Appl. Acoust.
,
104
, pp.
101
118
.10.1016/j.apacoust.2015.11.003
37.
Gaing
,
Z.-L.
,
2004
, “
Wavelet-Based Neural Network for Power Disturbance Recognition and Classification
,”
IEEE Trans. Power Deliv.
,
19
(
4
), pp.
1560
1568
.10.1109/TPWRD.2004.835281
38.
Saravanan
,
N.
, and
Ramachandran
,
K. I.
,
2010
, “
Incipient Gear Box Fault Diagnosis Using Discrete Wavelet Transform (DWT) for Feature Extraction and Classification Using Artificial Neural Network (ANN)
,”
Expert Syst. Appl.
,
37
(
6
), pp.
4168
4181
.10.1016/j.eswa.2009.11.006
39.
Paya
,
B. A.
,
Esat
,
I. I.
, and
Badi
,
M. N. M.
,
1997
, “
Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor
,”
Mech. Syst. Signal Process.
,
11
(
5
), pp.
751
765
.10.1006/mssp.1997.0090
40.
Browne
,
A.
,
1997
,
Neural Network Analysis, Architectures and Applications
,
CRC Press
, Nene College, UK.
41.
Nelles
,
O.
, and
Isermann
,
R.
,
1996
, “
Basis Function Networks for Interpolation of Local Linear Models
,”
35th IEEE Conference on Decision and Control
, Kobe, Japan, Dec. 13, pp.
470
475
.10.1109/CDC.1996.574356
42.
Kimmich
,
F.
,
Schwarte
,
A.
, and
Isermann
,
R.
,
2005
, “
Fault Detection for Modern Diesel Engines Using Signal-and Process Model-Based Methods
,”
Control Eng. Pract.
,
13
(
2
), pp.
189
203
.10.1016/j.conengprac.2004.03.002
43.
Vapnik
,
V.
,
2013
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
, New York.
44.
Wang
,
J.
,
Neskovic
,
P.
, and
Cooper
,
L. N.
,
2006
, “
Neighborhood Size Selection in the K-Nearest-Neighbor Rule Using Statistical Confidence
,”
Pattern Recognit.
,
39
(
3
), pp.
417
423
.10.1016/j.patcog.2005.08.009
45.
Bjørnstad
,
J. F.
, and
Butler
,
R. W.
,
1988
, “
The Equivalence of Backward Elimination and Multiple Comparisons
,”
J. Am. Stat. Assoc.
,
83
(
401
), pp.
136
144
.10.2307/2288932
You do not currently have access to this content.