Abstract

In this paper, we investigate the group consensus problem in directed networks where agents have third-order dynamics. Necessary and sufficient conditions on the controller parameters are obtained to ensure K-equilibria group consensus where K is determined by the structure of the directed graph. It is theoretically shown that, for an arbitrary directed graph, there exist controller parameters that satisfy the given conditions. A systematic method for choosing the controller parameters to guarantee group consensus is suggested and theoretical results are verified by numerical examples.

References

1.
Zhang
,
Z.
,
Zhang
,
Z.
, and
Zhang
,
H.
,
2018
, “
Distributed Attitude Control for Multispacecraft Via Takagi–Sugeno Fuzzy Approach
,”
IEEE Trans. Aerosp. Electron. Syst.
,
54
(
2
), pp.
642
654
.10.1109/TAES.2017.2761199
2.
Zhang
,
Z.
,
Shi
,
Y.
,
Zhang
,
Z.
, and
Yan
,
W.
,
2019
, “
New Results on Sliding-Mode Control for Takagi–Sugeno Fuzzy Multiagent Systems
,”
IEEE Trans. Cybern.
,
49
(
5
), pp.
1592
1604
.10.1109/TCYB.2018.2804759
3.
Zheng
,
Y.
,
Ma
,
J.
, and
Wang
,
L.
,
2018
, “
Consensus of Hybrid Multi-Agent Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
4
), pp.
1359
1365
.10.1109/TNNLS.2017.2651402
4.
Zhu
,
Y.
,
Li
,
S.
,
Ma
,
J.
, and
Zheng
,
Y.
,
2018
, “
Bipartite Consensus in Networks of Agents With Antagonistic Interactions and Quantization
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
65
(
12
), pp.
2012
2016
.10.1109/TCSII.2018.2811803
5.
Ma
,
J.
,
Ye
,
M.
,
Zheng
,
Y.
, and
Zhu
,
Y.
,
2019
, “
Consensus Analysis of Hybrid Multiagent Systems: A Game-Theoretic Approach
,”
Int. J. Robust Nonlinear Control
,
29
(
6
), pp.
1840
1853
.10.1002/rnc.4462
6.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2008
, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,”
Rob. Comput.-Integr. Manuf.
,
24
(
3
), pp.
415
426
.10.1016/j.rcim.2007.04.001
7.
Flash
,
T.
, and
Hogan
,
N.
,
1985
, “
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
,”
J. Neurosci.
,
5
(
7
), pp.
1688
1703
.10.1523/JNEUROSCI.05-07-01688.1985
8.
Yazdani
,
M.
,
Gamble
,
G.
,
Henderson
,
G.
, and
Hecht-Nielsen
,
R.
,
2012
, “
A Simple Control Policy for Achieving Minimum Jerk Trajectories
,”
Neural Networks
,
27
, pp.
74
80
.10.1016/j.neunet.2011.11.005
9.
Kyriakopoulos
,
K. J.
, and
Saridis
,
G. N.
,
1988
, “
Minimum Jerk Path Generation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Philadelphia, PA, Apr. 24–29, pp.
364
369
. 10.1109/ROBOT.1988.12075
10.
Baumann
,
J.
,
Torkzadeh
,
D. D.
,
Ramstein
,
A.
,
Kiencke
,
U.
, and
Schlegl
,
T.
,
2006
, “
Model-Based Predictive Anti-Jerk Control
,”
Control Eng. Pract.
,
14
(
3
), pp.
259
266
.10.1016/j.conengprac.2005.03.026
11.
Chen
,
J.
,
Bai
,
D.
,
Liang
,
H.
, and
Zhou
,
Y.
,
2018
, “
A Third-Order Consensus Approach for Vehicle Platoon With Intervehicle Communication
,”
J. Adv. Transp.
,
2018
, pp.
1
10
.10.1155/2018/8963289
12.
Godbole
,
D. N.
, and
Lygeros
,
J.
,
1994
, “
Longitudinal Control of the Lead Car of a Platoon
,”
IEEE Trans. Veh. Technol.
,
43
(
4
), pp.
1125
1135
.10.1109/25.330177
13.
Ren
,
W.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2007
, “
High-Order and Model Reference Consensus Algorithms in Cooperative Control of MultiVehicle Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
5
), pp.
678
688
.10.1115/1.2764508
14.
Wieland
,
P.
,
Kim
,
J.-S.
,
Scheu
,
H.
, and
Allgöwer
,
F.
,
2008
, “
On Consensus in Multi-Agent Systems With Linear High-Order Agents
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
1541
1546
.10.3182/20080706-5-KR-1001.00263
15.
Jiang
,
F.
,
Wang
,
L.
, and
Xie
,
G.
,
2010
, “
Consensus of High-Order Dynamic Multi-Agent Systems With Switching Topology and Time-Varying Delays
,”
J. Control Theory Appl.
,
8
(
1
), pp.
52
60
.10.1007/s11768-010-9184-x
16.
Miao
,
G.
,
Xu
,
S.
, and
Zou
,
Y.
,
2013
, “
Consentability for High-Order Multi-Agent Systems Under Noise Environment and Time Delays
,”
J. Franklin Inst.
,
350
(
2
), pp.
244
257
.10.1016/j.jfranklin.2012.10.015
17.
Xin
,
Y.
,
Li
,
Y.
,
Huang
,
X.
, and
Cheng
,
Z.
,
2015
, “
Consensus of Third-Order Nonlinear Multi-Agent Systems
,”
Neurocomputing
,
159
, pp.
84
89
.10.1016/j.neucom.2015.02.017
18.
Cao
,
Y.
, and
Sun
,
Y.
,
2015
, “
Consensus Analysis for Third-Order Multiagent Systems in Directed Networks
,”
Math. Probl. Eng.
,
2015
, pp.
1
9
.10.1155/2015/940823
19.
Cao
,
Y.
, and
Sun
,
Y.
,
2016
, “
Consensus of Discrete-Time Third-Order Multi-Agent Systems in Directed Networks
,”
Neurocomputing
,
177
, pp.
394
400
.10.1016/j.neucom.2015.11.039
20.
Cao
,
Y.
,
Sun
,
Y.
, and
Xie
,
X.-J.
,
2017
, “
Explicit Condition for Consensus of Third-Order Discrete-Time Multi-Agent Systems Without Accelerated Velocity Measurements
,”
J. Franklin Inst.
,
354
(
12
), pp.
5056
5066
.10.1016/j.jfranklin.2017.05.039
21.
Chehardoli
,
H.
, and
Homaeinezhad
,
M.
,
2018
, “
Third-Order Leader-Following Consensus Protocol of Traffic Flow Formed by Cooperative Vehicular Platoons by Considering Time Delay: Constant Spacing Strategy
,”
Proc. Inst. Mech. Eng., Part I
,
232
(
3
), pp.
285
298
.10.1177/0959651817750521
22.
Erkan
,
Ö. F.
,
Cihan
,
O.
, and
Akar
,
M.
,
2018
, “
Analysis of Distributed Consensus Protocols With Multi-Equilibria Under Time-Delays
,”
J. Franklin Inst.
,
355
(
1
), pp.
332
360
.10.1016/j.jfranklin.2017.10.028
23.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
2012
,
Matrix Analysis
, 2nd ed.,
Cambridge University Press
,
New York
.
24.
Xia
,
W.
, and
Cao
,
M.
,
2017
, “
Analysis and Applications of Spectral Properties of Grounded Laplacian Matrices for Directed Networks
,”
Automatica
,
80
, pp.
10
16
.10.1016/j.automatica.2017.01.009
25.
Zahreddine
,
Z.
, and
Elshehawey
,
E.
,
1988
, “
On the Stability of a System of Differential Equations With Complex Coefficients
,”
Indian J. Pure Appl. Math.
,
19
(
10
), pp.
963
972
.https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a79_963.pdf
You do not currently have access to this content.