Abstract
In this paper, we investigate the group consensus problem in directed networks where agents have third-order dynamics. Necessary and sufficient conditions on the controller parameters are obtained to ensure K-equilibria group consensus where K is determined by the structure of the directed graph. It is theoretically shown that, for an arbitrary directed graph, there exist controller parameters that satisfy the given conditions. A systematic method for choosing the controller parameters to guarantee group consensus is suggested and theoretical results are verified by numerical examples.
Issue Section:
Research Papers
References
1.
Zhang
,
Z.
,
Zhang
,
Z.
, and
Zhang
,
H.
, 2018
, “
Distributed Attitude Control for Multispacecraft Via Takagi–Sugeno Fuzzy Approach
,” IEEE Trans. Aerosp. Electron. Syst.
,
54
(2
), pp. 642
–654
.10.1109/TAES.2017.27611992.
Zhang
,
Z.
,
Shi
,
Y.
,
Zhang
,
Z.
, and
Yan
,
W.
, 2019
, “
New Results on Sliding-Mode Control for Takagi–Sugeno Fuzzy Multiagent Systems
,” IEEE Trans. Cybern.
,
49
(5
), pp. 1592
–1604
.10.1109/TCYB.2018.28047593.
Zheng
,
Y.
,
Ma
,
J.
, and
Wang
,
L.
, 2018
, “
Consensus of Hybrid Multi-Agent Systems
,” IEEE Trans. Neural Networks Learn. Syst.
,
29
(4
), pp. 1359
–1365
.10.1109/TNNLS.2017.26514024.
Zhu
,
Y.
,
Li
,
S.
,
Ma
,
J.
, and
Zheng
,
Y.
, 2018
, “
Bipartite Consensus in Networks of Agents With Antagonistic Interactions and Quantization
,” IEEE Trans. Circuits Syst. II: Express Briefs
,
65
(12
), pp. 2012
–2016
.10.1109/TCSII.2018.28118035.
Ma
,
J.
,
Ye
,
M.
,
Zheng
,
Y.
, and
Zhu
,
Y.
, 2019
, “
Consensus Analysis of Hybrid Multiagent Systems: A Game-Theoretic Approach
,” Int. J. Robust Nonlinear Control
,
29
(6
), pp. 1840
–1853
.10.1002/rnc.44626.
Gasparetto
,
A.
, and
Zanotto
,
V.
, 2008
, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,” Rob. Comput.-Integr. Manuf.
,
24
(3
), pp. 415
–426
.10.1016/j.rcim.2007.04.0017.
Flash
,
T.
, and
Hogan
,
N.
, 1985
, “
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
,” J. Neurosci.
,
5
(7
), pp. 1688
–1703
.10.1523/JNEUROSCI.05-07-01688.19858.
Yazdani
,
M.
,
Gamble
,
G.
,
Henderson
,
G.
, and
Hecht-Nielsen
,
R.
, 2012
, “
A Simple Control Policy for Achieving Minimum Jerk Trajectories
,” Neural Networks
,
27
, pp. 74
–80
.10.1016/j.neunet.2011.11.0059.
Kyriakopoulos
,
K. J.
, and
Saridis
,
G. N.
, 1988
, “
Minimum Jerk Path Generation
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Philadelphia, PA, Apr. 24–29, pp. 364
–369
. 10.1109/ROBOT.1988.1207510.
Baumann
,
J.
,
Torkzadeh
,
D. D.
,
Ramstein
,
A.
,
Kiencke
,
U.
, and
Schlegl
,
T.
, 2006
, “
Model-Based Predictive Anti-Jerk Control
,” Control Eng. Pract.
,
14
(3
), pp. 259
–266
.10.1016/j.conengprac.2005.03.02611.
Chen
,
J.
,
Bai
,
D.
,
Liang
,
H.
, and
Zhou
,
Y.
, 2018
, “
A Third-Order Consensus Approach for Vehicle Platoon With Intervehicle Communication
,” J. Adv. Transp.
,
2018
, pp. 1
–10
.10.1155/2018/896328912.
Godbole
,
D. N.
, and
Lygeros
,
J.
, 1994
, “
Longitudinal Control of the Lead Car of a Platoon
,” IEEE Trans. Veh. Technol.
,
43
(4
), pp. 1125
–1135
.10.1109/25.33017713.
Ren
,
W.
,
Moore
,
K. L.
, and
Chen
,
Y.
, 2007
, “
High-Order and Model Reference Consensus Algorithms in Cooperative Control of MultiVehicle Systems
,” ASME J. Dyn. Syst. Meas. Control
,
129
(5
), pp. 678
–688
.10.1115/1.276450814.
Wieland
,
P.
,
Kim
,
J.-S.
,
Scheu
,
H.
, and
Allgöwer
,
F.
, 2008
, “
On Consensus in Multi-Agent Systems With Linear High-Order Agents
,” IFAC Proc. Vol.
,
41
(2
), pp. 1541
–1546
.10.3182/20080706-5-KR-1001.0026315.
Jiang
,
F.
,
Wang
,
L.
, and
Xie
,
G.
, 2010
, “
Consensus of High-Order Dynamic Multi-Agent Systems With Switching Topology and Time-Varying Delays
,” J. Control Theory Appl.
,
8
(1
), pp. 52
–60
.10.1007/s11768-010-9184-x16.
Miao
,
G.
,
Xu
,
S.
, and
Zou
,
Y.
, 2013
, “
Consentability for High-Order Multi-Agent Systems Under Noise Environment and Time Delays
,” J. Franklin Inst.
,
350
(2
), pp. 244
–257
.10.1016/j.jfranklin.2012.10.01517.
Xin
,
Y.
,
Li
,
Y.
,
Huang
,
X.
, and
Cheng
,
Z.
, 2015
, “
Consensus of Third-Order Nonlinear Multi-Agent Systems
,” Neurocomputing
,
159
, pp. 84
–89
.10.1016/j.neucom.2015.02.01718.
Cao
,
Y.
, and
Sun
,
Y.
, 2015
, “
Consensus Analysis for Third-Order Multiagent Systems in Directed Networks
,” Math. Probl. Eng.
,
2015
, pp. 1
–9
.10.1155/2015/94082319.
Cao
,
Y.
, and
Sun
,
Y.
, 2016
, “
Consensus of Discrete-Time Third-Order Multi-Agent Systems in Directed Networks
,” Neurocomputing
,
177
, pp. 394
–400
.10.1016/j.neucom.2015.11.03920.
Cao
,
Y.
,
Sun
,
Y.
, and
Xie
,
X.-J.
, 2017
, “
Explicit Condition for Consensus of Third-Order Discrete-Time Multi-Agent Systems Without Accelerated Velocity Measurements
,” J. Franklin Inst.
,
354
(12
), pp. 5056
–5066
.10.1016/j.jfranklin.2017.05.03921.
Chehardoli
,
H.
, and
Homaeinezhad
,
M.
, 2018
, “
Third-Order Leader-Following Consensus Protocol of Traffic Flow Formed by Cooperative Vehicular Platoons by Considering Time Delay: Constant Spacing Strategy
,” Proc. Inst. Mech. Eng., Part I
,
232
(3
), pp. 285
–298
.10.1177/095965181775052122.
Erkan
,
Ö. F.
,
Cihan
,
O.
, and
Akar
,
M.
, 2018
, “
Analysis of Distributed Consensus Protocols With Multi-Equilibria Under Time-Delays
,” J. Franklin Inst.
,
355
(1
), pp. 332
–360
.10.1016/j.jfranklin.2017.10.02823.
Horn
,
R. A.
, and
Johnson
,
C. R.
, 2012
, Matrix Analysis
, 2nd ed.,
Cambridge University Press
,
New York
.24.
Xia
,
W.
, and
Cao
,
M.
, 2017
, “
Analysis and Applications of Spectral Properties of Grounded Laplacian Matrices for Directed Networks
,” Automatica
,
80
, pp. 10
–16
.10.1016/j.automatica.2017.01.00925.
Zahreddine
,
Z.
, and
Elshehawey
,
E.
, 1988
, “
On the Stability of a System of Differential Equations With Complex Coefficients
,” Indian J. Pure Appl. Math.
,
19
(10
), pp. 963
–972
.https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a79_963.pdfCopyright © 2020 by ASME
You do not currently have access to this content.