Motor speed synchronization is important in gear shifting of emerging clutchless automated manual transmissions (AMT) for electric vehicles and other kinds of parallel shaft-based powertrains for hybrid electric vehicles. This paper proposes a speed synchronization controller design for a kind of system integrating a traction motor and a dual clutch transmission (DCT), using optimal control and disturbances compensation. Based on the relativity between magnitudes of different system parameters, the optimal control law is simplified into the proportional (P) one to ease design and analysis. Relationship between the feedback gain and the duration of speed synchronization process is derived in an explicit way to facilitate model-based determination of controller parameters. To alleviate overshoot while maintaining predesigned performances, the explicit nominal speed trajectory rather than the fixed setpoint speed is chosen as the reference signal. To improve robustness of the controller, a time-domain disturbance observer (DO) is added to cancel effects from parameter drift, unmodeled dynamics, and other exogenous disturbances. As a result, the proposed controller possesses merits of few controller parameters to be determined, good transient response, and robustness. These features make it suitable for practical engineering use. Simulation and experiment results verify its effectiveness in attaining both a fast and small-overshoot speed synchronizing process.

References

1.
Wang
,
X.
,
Li
,
L.
,
He
,
K.
,
Liu
,
Y.
, and
Liu
,
C.
,
2018
, “
Position and Force Switching Control for Gear Engagement of Automated Manual Transmission Gear-Shift Process
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p. 081010.
2.
Wang
,
X.
,
Li
,
L.
,
He
,
K.
, and
Liu
,
C.
,
2018
, “
Dual-Loop Self-Learning Fuzzy Control for AMT Gear Engagement: Design and Experiment
,”
IEEE Trans. Fuzzy Syst.
,
26
(
4
), pp.
1813
1822
.
3.
Wang
,
Q.
,
Yang
,
C.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
City-Bus-Route Demand-Based Efficient Coupling Driving Control for Parallel Plug-in Hybrid Electric Bus
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
58
.
4.
Zhang
,
L.
,
Shi
,
Y.
,
Chen
,
T.
, and
Huang
,
B.
,
2005
, “
A New Method for Stabilization of Networked Control Systems With Random Delays
,”
IEEE Trans. Automat. Control
,
50
(
8
), pp.
1177
1181
.
5.
Zhu
,
X.
,
Zhang
,
H.
,
Cao
,
D.
, and
Fang
,
Z.
,
2015
, “
Robust Control of Integrated Motor-Transmission Powertrain System Over Controller Area Network for Automotive Applications
,”
Mech. Syst. Signal Process.
,
58
, pp.
15
28
.
6.
Zhu
,
X.
,
Zhang
,
H.
, and
Fang
,
Z.
,
2015
, “
Speed Synchronization Control for Integrated Automotive Motor-Transmission Powertrain System With Random Delays
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
46
57
.
7.
Cao
,
W.
,
Wu
,
Y.
,
Chang
,
Y.
,
Liu
,
Z.
,
Lin
,
C.
,
Song
,
Q.
, and
Szumanowski
,
A.
,
2018
, “
Speed Synchronization Control for Integrated Automotive Motor-Transmission Powertrains Over CAN Through a Co-Design Methodology
,”
IEEE Access
,
6
, pp.
14106
14117
.
8.
Cao
,
W.
,
Liu
,
H.
,
Lin
,
C.
, and
Song
,
Q.
,
2017
, “
Speed Synchronization Control of Electric Vehicle's IMT Powertrain Systems Over CAN With Bandwidth Constraint
,”
43rd Annual Conference of the IEEE Industrial Electronics Society (IECON 2017)
, pp.
4650
4655
.
9.
Cao
,
W.
,
Liu
,
H.
,
Lin
,
C.
,
Chang
,
Y.
,
Liu
,
Z.
, and
Szumanowski
,
A.
,
2017
, “
Speed Synchronization Control of Integrated Motor–Transmission Powertrain Over CAN Through Active Period-Scheduling Approach
,”
Energies
,
10
(
11
), p.
1831
.
10.
Zhu
,
X.
,
Zhang
,
H.
,
Xi
,
J.
,
Wang
,
J.
, and
Fang
,
Z.
,
2014
, “
Optimal Speed Synchronization Control for Clutchless AMT Systems in Electric Vehicles With Preview Actions
,”
American Control Conference
, pp.
4611
4616
.
11.
Alizadeh
,
H. V.
, and
Boulet
,
B.
,
2014
, “
Robust Control of Synchromesh Friction in an Electric Vehicle's Clutchless Automated Manual Transmission
,”
IEEE Conference on Control Applications (CCA 2014)
, pp.
611
616
.
12.
Zhu
,
X.
,
Zhang
,
H.
,
Xi
,
J.
,
Wang
,
J.
, and
Fang
,
Z.
,
2015
, “
Robust Speed Synchronization Control for Clutchless Automated Manual Transmission Systems in Electric Vehicles
,”
Proc. Inst. Mech. Eng. Part D
,
229
(
4
), pp.
424
436
.
13.
Yu
,
C. H.
, and
Tseng
,
C. Y.
,
2013
, “
Research on Gear-Change Control Technology for the Clutchless Automatic-Manual Transmission of an Electric Vehicle
,”
Proc. Inst. Mech. Eng. Part D
,
227
(
10
), pp.
1446
1458
.
14.
Yu
,
C. H.
,
Tseng
,
C. Y.
, and
Wang
,
C. P.
,
2012
, “
Smooth Gear-Change Control for EV Clutchless Automatic Manual Transmission
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
, pp.
971
976
.
15.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.
, and
Chen
,
X.
,
2014
,
Disturbance Observer-Based Control: Methods and Applications
, CRC Press, Boca Raton, FL.
16.
Negm
,
M. M. M.
,
Bakhashwain
,
J. M.
, and
Shwehdi
,
M. H.
,
2006
, “
Speed Control of a Three-Phase Induction Motor Based on Robust Optimal Preview Control Theory
,”
IEEE Trans. Energy Convers.
,
21
(
1
), pp.
77
84
.
17.
Zhang
,
H.
,
Shi
,
Y.
, and
Mu
,
B.
,
2013
, “
Optimal H∞-Based Linear-Quadratic Regulator Tracking Control for Discrete-Time Takagi–Sugeno Fuzzy Systems With Preview Actions
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
4
), p.
044501
.
18.
Chilali
,
M.
,
Gahinet
,
P.
, and
Apkarian
,
P.
,
1999
, “
Robust Pole Placement in LMI Regions
,”
IEEE Trans. Automat. Control
,
44
(
12
), pp.
2257
2270
.
19.
Chilali
,
M.
, and
Gahinet
,
P.
,
1996
, “
H∞ Design With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Automat. Control
,
41
(
3
), pp.
358
367
.
20.
Lewis
,
F. L.
,
Vrabie
,
D. L.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
, 3rd ed., John Wiley & Sons, Hoboken, NJ.
21.
Kirk
,
D. E.
,
1998
,
Optimal Control Theory
,
Dover Publications
, Mineola, NY.
22.
Kalman
,
R. E.
,
1960
, “
Contributions to the Theory of Optimal Control
,”
Bol. Soc. Mat. Mex.
,
5
, pp.
102
119
.
You do not currently have access to this content.