Manufacturing automation, especially through implementation of autonomous ground vehicle (AGV) technology, has been under intensive study due to increased productivity and reduced variations. The objective of this paper is to present an algorithm on scheduling of an AGV that traverses desired locations on a manufacturing floor. Although many algorithms have been developed to achieve this objective, most of them rely on exhaustive search, which is time-consuming. A novel two-step algorithm that generates “good,” but not necessarily optimal, solutions for relatively large data sets (≈1000 points) is proposed, taking into account time constraints. A tradeoff analysis of computational expense versus algorithm performance is discussed. The algorithm enables the AGV to find a tour, which is as good as possible within the time constraint, using which it can travel through all given coordinates before returning to the starting location or a specified end point. Compared to exhaustive search methods, this algorithm generates results within a stipulated computation time of 30 s on a laptop personal computer.

References

1.
Latombe
,
J.-C.
,
2012
,
Robot Motion Planning
,
Springer
, New York.
2.
Kavraki
,
L.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
3.
Kuffner
,
J.
, and
LaValle
,
S.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
IEEE
International Conference Robotics and Automation
, San Francisco, CA, Apr. 24–28, pp.
995
1001
.
4.
Hwang
,
Y. K.
, and
Ahuja
,
N.
,
1992
, “
Gross Motion Planning—A Survey
,”
ACM Comput. Surv.
,
24
(
3
), pp.
219
291
.
5.
Lenstra
,
J. K.
, and
Kan
,
A. H. G. R.
,
1975
, “
Some Simple Applications of the Travelling Salesman Problem
,”
J. Oper. Res. Soc.
,
26
(
4
), pp.
717
733
.
6.
Edan
,
Y.
,
Flash
,
T.
,
Peiper
,
U.
,
Shmulevich
,
I.
, and
Sarig
,
Y.
,
1991
, “
Some Simple Applications of the Travelling Salesman Problem
,”
IEEE Trans. Rob. Autom.
,
7
(
1
), pp.
48
56
.
7.
Sundar
,
K.
, and
Rathinam
,
S.
,
2014
, “
Algorithms for Routing an Unmanned Aerial Vehicle in the Presence of Refueling Depots
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
1
), pp.
287
294
.
8.
Oberlin
,
P.
,
2010
, “
Today's Traveling Salesman Problem
,”
IEEE Rob. Autom. Mag.
,
17
(
4
), pp.
70
77
.
9.
Held
,
M.
, and
Karp
,
R. M.
,
1962
, “
A Dynamic Programming Approach to Sequencing Problems
,”
J. Soc. Ind. Appl. Math.
,
10
(
1
), pp.
196
210
.
10.
Applegate
,
D. L.
,
2007
,
The Traveling Salesman Problem
,
Princeton University Press
,
Princeton, NJ
.
11.
Dantzig
,
G. B.
,
Fulkerson
,
D. R.
, and
Johnson
,
S. M.
,
1954
, “
Solution of a Large-Scale Travelling Salesman Problem
,”
Oper. Res.
,
2
(
4
), pp.
393
410
.
12.
Padberg
,
M.
, and
Rinaldi
,
G.
,
1991
, “
A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems
,”
SIAM Rev.
,
33
(
1
), pp.
60
100
.
13.
Jain
,
A. K.
, and
Dubes
,
R. C.
,
1988
,
Algorithms for Clustering Data
,
Prentice Hall Inc.
, Upper Saddle River, NJ.
14.
Christofides
,
N.
,
1976
, “Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem,”
Carnegie Mellon University
,
Pittsburgh, PA
, Report No. 388.
15.
Rosenkrantz
,
D. J.
,
Stearns
,
R. E.
, and
Lewis
,
P. M.
,
1977
, “
An Analysis of Several Heuristics for the Traveling Salesman Problem
,”
SIAM J. Comput.
,
6
(
3
), pp.
563
581
.
16.
Yatsenko
,
V.
,
2007
, “
Fast Exact Method for Solving the Travelling Salesman Problem
,” e-print arXiv:cs/0702133 [cs.CC].
17.
Lin
,
S.
, and
Kernighan
,
B. W.
,
1973
, “
An Effective Heuristic Algorithm for the Traveling Salesman Problem
,”
Oper. Res.
,
21
(
2
), pp.
498
516
.
18.
Helsgaun
,
K.
,
2000
, “
An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic
,”
Eur. J. Oper. Res.
,
126
(
1
), pp.
106
130
.
19.
Nagata
,
Y.
, and
Kobayashi
,
S.
,
2013
, “
A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling Salesman Problem
,”
INFORMS J. Comput.
,
25
(
2
), pp.
346
363
.
20.
Wang
,
J.
,
Ersoy
,
O. K.
,
He
,
M.
, and
Wang
,
F.
,
2016
, “
Multi-Offspring Genetic Algorithm and Its Application to the Traveling Salesman Problem
,”
Appl. Soft Comput.
,
43
(
C
), pp.
415
423
.
21.
Kivelevitch
,
E.
,
Cohen
,
K.
, and
Kumar
,
M.
,
2013
, “
A Market-Based Solution to the Multiple Traveling Salesmen Problem
,”
J. Intell. Rob. Syst.
,
72
(
1
), pp.
21
40
.
22.
Yang
,
J.
,
Shi
,
X.
,
Marchese
,
M.
, and
Liang
,
Y.
,
2008
, “
An Ant Colony Optimization Method for Generalized TSP Problem
,”
Prog. Nat. Sci.
,
18
(
11
), pp.
1417
1422
.
23.
Dorigo
,
M.
, and
Birattari
,
M.
,
2011
, “
Ant Colony Optimization
,”
Encyclopedia of Machine Learning
,
Springer
, Boston, MA, pp.
36
39
.
24.
Lin
,
Y.
,
Bian
,
Z.
, and
Liu
,
X.
,
2016
, “
Developing a Dynamic Neighborhood Structure for an Adaptive Hybrid Simulated Annealing–Tabu Search Algorithm to Solve the Symmetrical Traveling Salesman Problem
,”
Appl. Soft Comput.
,
49
, pp.
937
952
.
25.
Johnson
,
D. S.
, and
McGeoch
,
L. A.
,
1997
, “
The Traveling Salesman Problem: A Case Study in Local Optimization
,”
Local Search in Combinatorial Optimization
,
E. H. L.
Aarts
, and
J. K.
Lenstra
, eds.,
Wiley
,
London
, pp.
215
310
.
26.
Johnson
,
D. S.
, and
McGeoch
,
L. A.
,
2007
, “
Experimental Analysis of Heuristics for the STSP
,”
The Traveling Salesman Problem and Its Variations
,
G.
Gutin
, and
A. P.
Punnen
, eds.,
Springer
, Boston, MA, pp.
369
443
.
27.
Adrabinski
,
A.
, and
Syslo
,
M. M.
,
1983
, “
Computational Experiments With Some Approximation Algorithms for the Travelling Salesman Problem
,”
Appl. Math.
,
18
(
1
), pp.
91
95
.
28.
Perttunen
,
J.
,
1994
, “
On the Significance of the Initial Solution in Travelling Salesman Heuristics
,”
J. Oper. Res. Soc.
,
45
(
10
), pp.
1131
1140
.
29.
Clingerman
,
C.
,
Hemphill
,
J.
, and
Proscia
,
C.
,
2008
, “Analysis and Counterexamples Regarding Yatsenko's Polynomial-Time Algorithm for Solving the Traveling Salesman Problem,”
The University of Rochester
,
Rochester, NY
.
30.
Pan
,
Y.
, and
Xia
,
Y.
,
2014
, “
Solving TSP by Dismantling Cross Paths
,”
IEEE International Conference on Orange Technologies
(
ICOT
), Xian, China, Sept. 20–23, pp.
121
124
.
31.
Hoogeveen
,
J.
,
1991
, “
Analysis of Christofides' Heuristic: Some Paths are More Difficult Than Cycles
,”
Oper. Res. Lett.
,
10
(
5
), pp.
291
295
.
32.
Czyzyk
,
J.
,
Mesnier
,
M. P.
, and
Moré
,
J. J.
,
1998
, “
The NEOS Server
,”
IEEE Journal on Computational Science and Engineering
,
5
(
3
), pp.
68
75
.
33.
Dolan
,
E.
,
2001
, “
The NEOS Server 4.0 Administrative Guide
,” Argonne National Laboratory, Argonne, IL, Technical Report No.
ANL/MCS-TM-250
.http://www.ipd.anl.gov/anlpubs/2001/07/39844.pdf
34.
Gropp
,
W.
, and
Moré
,
J. J.
,
1997
, “
Optimization Environments and the NEOS Server
,”
Approximation Theory and Optimization
,
M. D.
Buhmann
, and
A.
Iserles
, eds.,
Cambridge University Press
, Cambridge, UK, pp. 167–182.
35.
Cook
,
W. J.
,
2009
, “
TSP Test Data
,” University of Waterloo, Waterloo, ON, accessed date Sept. 1, 2017 http://www.math.uwaterloo.ca/tsp/data/index.html.
36.
Reinelt
,
G.
,
1991
, “
TSPLIB—A Traveling Salesman Problem Library
,”
ORSA Journal on Computing
,
3
(
4
), pp.
376
384
.
37.
Sheng
,
W.
,
Xi
,
N.
,
Song
,
M.
, and
Chen
,
Y.
,
2005
, “
Robot Path Planning for Dimensional Measurement in Automotive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
420
428
.
You do not currently have access to this content.