Dead-zone is one of the most common hard nonlinearities ubiquitous in master–slave teleoperation systems, particularly in the slave robot joints. However, adaptive control techniques applied in teleoperation systems usually deal with dynamic uncertainty but ignore the presence of dead-zone. Dead-zone has the potential to remarkably deteriorate the transparency of a teleoperation system in the sense of position and force tracking performance or even destabilizing the system if not compensated for in the control scheme. In this paper, an adaptive bilateral control scheme is proposed for nonlinear teleoperation systems in the presence of both uncertain dynamics and dead-zone. An adaptive controller is designed for the master robot with dynamic uncertainties and the other is developed for the slave robot with both dynamic uncertainties and unknown dead-zone. The two controllers are incorporated into the four-channel bilateral teleoperation control framework to achieve transparency. The transparency and stability of the closed-loop teleoperation system is studied via a Lyapunov function analysis. Comparisons with the conventional adaptive control which merely deal with dynamic uncertainties in the simulations demonstrate the validity of the proposed approach.

References

1.
Hokayem
,
P.
, and
Spong
,
M.
,
2006
, “
Bilateral Teleoperation: An Historical Survey
,”
Automatica
,
42
(
12
), pp.
2035
2057
.
2.
Zhu
,
W.
, and
Salcudean
,
S. E.
,
2000
, “
Stability Guaranteed Teleoperation: An Adaptive Motion/Force Control Approach
,”
IEEE Trans. Autom. Control
,
45
(
11
), pp.
1951
1969
.
3.
Hung
,
N. V. Q.
,
Narikiyo
,
T.
, and
Tuan
,
H. D.
,
2003
, “
Nonlinear Adaptive Control of Master-Slave System in Teleoperation
,”
Control Eng. Pract.
,
11
(
1
), pp.
1
10
.
4.
Chopra
,
N.
,
Spong
,
M. W.
, and
Lozano
,
R.
,
2008
, “
Synchronization of Bilateral Teleoperators With Time Delay
,”
Automatica
,
44
(
8
), pp.
2142
2148
.
5.
Nuño
,
E.
,
Ortega
,
R.
, and
Basañez
,
L.
,
2010
, “
An Adaptive Controller for Nonlinear Teleoperators
,”
Automatica
,
46
(
1
), pp.
155
159
.
6.
Hashemzadeh
,
F.
,
Hassanzadeh
,
I.
, and
Tavakoli
,
M.
,
2013
, “
Teleoperation in the Presence of Varying Time Delays and Sandwich Linearity in Actuators
,”
Automatica
,
49
(
9
), pp.
2813
2821
.
7.
Liu
,
X.
,
Tao
,
R.
, and
Tavakoli
,
M.
,
2014
, “
Adaptive Control of Uncertain Nonlinear Teleoperation Systems
,”
Mechatronics
,
24
(
1
), pp.
66
78
.
8.
Islam
,
S.
,
Liu
,
P. X.
, and
Saddik
,
A. E. I.
,
2015
, “
Nonlinear Adaptive Control for Teleoperation Systems With Symmetrical and Unsymmetrical Time-Varying Delay
,”
Int. J. Syst. Sci.
,
46
(
16
), pp.
2928
2938
.
9.
Zhai
,
D. H.
, and
Xia
,
Y. Q.
,
2016
, “
Adaptive Control for Teleoperation System With Varying Time Delays and Input Saturation Constraints
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
6921
6929
.
10.
Franco
,
E.
,
2016
, “
Combined Adaptive and Predictive Control for a Teleoperation System With Force Disturbance and Input Delay
,”
Front. Rob. AI
,
3
, pp.
1
11
.
11.
Wang
,
H. Q.
,
Liu
,
P. X.
, and
Liu
,
S. C.
,
2017
, “
Adaptive Neural Synchronization Control for Bilateral Teleoperation Systems With Time Delay and Backlash-Like Hysteresis
,”
IEEE Trans. Cybern.
,
47
(
10
), pp.
3018
3026
.
12.
Abut
,
T.
, and
Soyguder
,
S.
,
2017
, “
Real-Time Control of Bilateral Teleoperation System With Adaptive Computed Torque Method
,”
Ind. Rob.
,
44
(
3
), pp.
299
311
.
13.
Li
,
Y. L.
,
Yin
,
Y. X.
, and
Zhang
,
D. Z.
,
2018
, “
Adaptive Task-Space Synchronization Control of Bilateral Teleoperation Systems With Uncertain Parameters and Communication Delays
,”
IEEE Access
,
6
, pp.
5740
5748
.
14.
Lu
,
Z. Y.
,
Huang
,
P. F.
, and
Liu
,
Z. X.
,
2018
, “
Predictive Approach for Sensorless Bimanual Teleoperation Under Random Time Delays With Adaptive Fuzzy Control
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2439
2448
.
15.
Tao
,
G.
, and
Kokotovic
,
P. V.
,
1996
,
Adaptive Control of Systems With Actuator and Sensor Nonlinearities
,
Wiley
,
New York
.
16.
Crradini
,
M. L.
,
Orlando
,
G.
, and
Parlangeli
,
G.
,
2004
, “
A VSC Approach for the Robust Stabilization of Nonlinear Plants With Uncertain Nonsmooth Actuator Nonlinearities—A Unified Framework
,”
IEEE Trans. Autom. Control
,
49
(
5
), pp.
807
812
.
17.
Wang
,
X.
,
Su
,
C.
, and
Hong
,
H.
,
2004
, “
Robust Adaptive Control of a Class of Nonlinear Systems With Unknown Dead-Zone
,”
Automatica
,
40
(
3
), pp.
407
413
.
18.
Kelly
,
R.
,
Santibanez
,
V.
, and
Loria
,
A.
,
2005
,
Control of Robot Manipulators in Joint Space
,
Springer
,
Berlin
.
19.
Lewis
,
F. L.
,
Tim
,
W. K.
,
Wang
,
L.
, and
Li
,
Z.
,
1999
, “
Dead-Zone Compensation in Motion Control Systems Using Adaptive Fuzzy Logic Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
6
), pp.
731
741
.
20.
Tavakoli
,
M.
,
Aziminejad
,
A.
,
Patel
,
R. V.
, and Moallem, M.,
2007
, “
High-Fidelity Bilateral Teleoperation Systems and the Effect of Multimodal Haptics
,”
IEEE Trans. Syst., Man, Cybern.-Part B
,
37
(
6
), pp.
1512
1528
.
21.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
22.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
23.
Dyck
,
M.
, and
Tavakoli
,
M.
,
2013
, “
Measuring the Dynamic Impedance of the Human Arm Without a Force Sensor
,”
IEEE
International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26, pp.
978
985
.
24.
Chan
,
L.
,
Naghdy
,
F.
, and
Stirling
,
D.
,
2014
, “
Application of Adaptive Controllers in Teleoperation Systems: A Survey
,”
IEEE Trans. Hum.-Mach. Syst.
,
44
(
3
), pp.
337
352
.
You do not currently have access to this content.