This paper proposes an iterative linear matrix inequality (LMI) method for tuning the parameters of multi-input multi-output (MIMO) proportional–integral–derivative (PID) controllers. The proposed method calculates the parameters of controller such that the singular values (SVs) of the sensitivity function are shaped according to the given weight function. For this purpose, first using bounded real lemma (BRL), this problem is represented as a bilinear matrix inequality (BMI) where one of the matrix variables is the variable of Lyapunov equation and the other is structured and contains the matrices of the state-space representation of the controller. This BMI is solved approximately using a novel iterative procedure which linearizes the BMI around an initial solution to arrive at an LMI. The point around which the BMI is linearized is updated automatically at each iteration and the linearized BMI has the nice property that it is obtained by minimizing the amplitude of nonconvex terms.

References

1.
Åström
,
K. J.
, and
Hägglund
,
T.
,
2006
,
Advanced PID Control
,
Instrumentation, Systems, and Automation Society
,
Research Triangle Park, NC
.
2.
Vilanova
,
R.
, and
Visioli
,
A.
,
2012
,
PID Control in the Third Millennium: Lessons Learned and New Approaches
,
Springer Verlag
,
Berlin
.
3.
Ukpai
,
U. I.
, and
Jayasuriya
,
S.
,
2004
, “
Using Controller Reduction Techniques for Efficient PID Controller Synthesis
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
3
), pp.
692
696
.
4.
Wang
,
Q.-G.
,
Ye
,
Z.
,
Cai
,
W.-J.
, and
Hang
,
C. C.
,
2008
,
PID Control for Multivariable Processes
,
Springer Science & Business Media
,
Berlin
.
5.
Gündeş
,
A. N.
,
Özbayb
,
H.
, and
Özgüler
,
A. B.
,
2007
, “
PID Controller Synthesis for a Class of Unstable MIMO Plants With I/O Delays
,”
Automatica
,
43
(
1
), pp.
135
142
.
6.
Ruiz-López
,
I. I.
,
Rodríguez-Jimenes
,
G. C.
, and
García-Alvarado
,
M. A.
,
2006
, “
Robust MIMO PID Controllers Tuning Based on Complex/Real Ratio of the Characteristic Matrix Eigenvalues
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4332
4340
.
7.
Wang
,
C.
, and
Li
,
D.
,
2011
, “
Decentralized PID Controllers Based on Probabilistic Robustness
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
061015
.
8.
Blondel
,
V. D.
, and
Tsitsiklis
,
J. N.
,
1997
, “
NP-Hardness of Some Linear Control Design Problems
,”
SIAM J. Control Optim.
,
35
(
6
), pp.
2118
2127
.
9.
Apkarian
,
P.
, and
Noll
,
D.
,
2006
, “
Nonsmooth H∞-Synthesis
,”
IEEE Trans. Autom. Control
,
51
(
2
), pp.
229
244
.
10.
Pradhan
,
J. K.
, and
Ghosh
,
A.
,
2015
, “
Multi-Input and Multi-Output Proportional-Integral-Derivative Controller Design Via Linear Quadratic Regulator-Linear Matrix Inequality Approach
,”
IET Control Theory Appl.
,
9
(
14
), pp.
2140
2145
.
11.
Boyd
,
S.
,
Hast
,
M.
, and
Åström
,
K. J.
,
2016
, “
MIMO PID Tuning Via Iterated LMI Restriction
,”
Int. J. Robust Nonlinear Control
,
26
(
8
), pp.
1718
1731
.
12.
Wu
,
Z.
,
Iqbal
,
A.
, and
Ben Amara
,
F.
,
2011
, “
LMI-Based Multivariable PID Controller Design and Its Application to the Control of the Surface Shape of Magnetic Fluid Deformable Mirrors
,”
IEEE Trans. Control Syst. Technol.
,
19
(
4
), pp.
717
729
.
13.
Zheng
,
F.
,
Wang
,
Q.-G.
, and
Lee
,
T. H.
,
2002
, “
On the Design of Multivariable PID Controllers Via LMI Approach
,”
Automatica
,
38
(
3
), pp.
517
526
.
14.
Lin
,
C.
,
Wang
,
Q.-G.
, and
Lee
,
T. H.
,
2004
, “
An Improvement on Multivariable PID Controller Design Via Iterative LMI Approach
,”
Automatica
,
40
(
3
), pp.
519
525
.
15.
Liu
,
J.
,
Lam
,
J.
,
Shen
,
M.
, and
Shu
,
Z.
,
2017
, “
Non-Fragile Multivariable PID Controller Design Via System Augmentation
,”
Int. J. Syst. Sci.
,
48
(
10
), pp.
2168
2181
.
16.
Mohamed
,
Z.
,
Khairudin
,
M.
,
Husain
,
A. R.
, and
Subudhi
,
B.
,
2016
, “
Linear Matrix Inequality-Based Robust Proportional Derivative Control of a Two-Link Flexible Manipulator
,”
J. Vib. Control
,
22
(
5
), pp.
1244
1256
.
17.
Ge
,
M.
,
Chiu
,
M.-S.
, and
Wang
,
Q.-G.
,
2002
, “
Robust PID Controller Design Via LMI Approach
,”
J. Process Control
,
12
(
1
), pp.
3
13
.
18.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control
,
John Willey and Sons
,
New York
.
19.
Tran Dinh
,
Q.
,
Gumussoy
,
S.
,
Michiels
,
W.
, and
Diehl
,
M.
,
2012
, “
Combining Convex-Concave Decompositions and Linearization Approaches for Solving BMIs, With Application to Static Output Feedback
,”
IEEE Trans. Autom. Control
,
57
(
6
), pp.
1377
1390
.
20.
Hast
,
M.
,
Åström
,
K. J.
,
Bernhardsson
,
B.
, and
Boyd
,
S.
,
2013
, “
PID Design by Convex-Concave Optimization
,”
European Control Conference
, Zurich, Switzerland, pp.
4460
4465
.
21.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.
22.
Patel
,
R. V.
, and
Munro
,
N.
,
1982
,
Multivariable System Theory and Design
,
Pergamon Press
, Oxford,
UK
.
23.
Porter
,
B.
, and
Khaki-Sedigh
,
A.
,
1990
, “
Design of Tunable Digital Set-Point Tracking Controllers for Linear Multivariable Type-One Plants
,”
Int. J. Syst. Sci.
,
21
(
3
), pp.
447
461
.
You do not currently have access to this content.