This paper presents a novel configuration of flight vehicle with moving mass control. We focus on the development of the proposed control mechanism and investigate the feasibility of an equivalent experimental setup. First, the effect of the moving mass parameters on the control authority is investigated. Then, a control law based on immersion and invariance (I&I) theory is presented for the moving mass control system. In the design process, we select a first-order target system to reduce the difficulty of controller design. To deal with the coupling caused by the additional inertia moment, which is generated by the motion of the moving mass, the extended state observer (ESO) is designed. The proposed adaptive controller is simulated and tested on the experimental setup. Finally, the simulation results validate the quality of the proposed adaptive controller, which ensures a good performance in the novel configuration with internal moving mass.

References

1.
Janssens
,
F. L.
, and
van der Ha
,
J. C.
,
2015
, “
Stability of Spinning Satellite Under Axial Thrust, Internal Mass Motion, and Damping
,”
J. Guid., Control, Dyn.
,
38
(
4
), pp.
761
771
.
2.
Chen
,
L.
,
Zhou
,
G.
,
Yan
,
X. J.
, and
Duan
,
D. P.
,
2012
, “
Composite Control of Stratospheric Airships With Moving Masses
,”
J. Aircr.
,
49
(
3
), pp.
794
801
.
3.
Woolsey
,
C. A.
,
2005
, “
Reduced Hamiltonian Dynamics for a Rigid Body Coupled to a Moving Point Mass
,”
J. Guid., Control, Dyn.
,
28
(
1
), pp.
131
138
.
4.
Erturk
,
S. A.
, and
Dogan
,
A.
,
2013
, “
Trim Analysis of a Moving-Mass Actuated Airplane in Steady Turn
,”
AIAA
Paper No. 2013-0622.
5.
Vengate
,
S. R.
,
Erturk
,
S. A.
, and
Dogan
,
A.
,
2016
, “
Development and Flight Test of Moving-Mass Actuated Unmanned Aerial Vehicle
,”
AIAA
Paper No. 2016-3713.
6.
Claus
,
B.
, and
Bachmayer
,
R.
,
2017
, “
A Parameterized Geometric Magnetic Field Calibration Method for Vehicles With Moving Masses With Applications to Underwater Gliders
,”
J. Field Rob.
,
34
(
1
), pp. 209–223.
7.
Haus
,
T.
,
Prkut
,
N.
,
Borovina
,
K.
,
Maric
,
B.
, and
Orsag
,
M.
,
2016
, “
A Novel Concept of Attitude Control for Large Multirotor-UAVs Based on Moving Mass Control
,”
24th Mediterranean Conference on Control and Automation
(
MED
), Athens, Greece, June 21–24, pp.
832
839
.
8.
Zhang
,
Z.
,
Wang
,
Y. K.
, and
Mao
,
J. Q.
,
2012
, “
Moving-Mass Control of Hypersonic Vehicles Based on Fuzzy Tree Inverse Method
,”
Sci. China Technol.
,
42
(
11
), pp.
1379
1390
.
9.
Menon
,
P. K.
,
Sweriduk
,
G. D.
,
Ohlmeyer
,
E. J.
, and
Malyevac
,
D. S.
,
2004
, “
Integrated Guidance and Control of Moving-Mass Actuated Kinetic Warheads
,”
J. Guid., Control, Dyn.
,
27
(
1
), pp.
118
126
. .
10.
Petsopoulos
,
T.
,
Regan
,
F. J.
, and
Barlow
,
J.
,
1996
, “
Moving-Mass Roll Control System for Fixed-Trim Re-Entry Vehicle
,”
J. Spacecr. Rockets
,
33
(
1
), pp.
54
60
.
11.
Robinett
,
R. D.
,
Sturgis
,
B. R.
, and
Kerr
,
S. A.
,
1996
, “
Moving Mass Trim Control for Aerospace Vehicles
,”
J. Guid., Control, Dyn.
,
19
(
5
), pp.
1064
1070
.
12.
Gao
,
C.
,
Jing
,
W.
, and
Wei
,
P.
,
2013
, “
Research on Application of Single Moving Mass in the Reentry Warhead Maneuver
,”
Aerosp. Sci. Technol.
,
30
(
1
), pp.
108
118
.
13.
Gao, C., Jing, W., and Wei, P.,
2014
, “
Roll Control Problem for the Long-Range Maneuverable Warhead
,”
Aircr. Eng. Aerosp. Technol.
,
86
(
5
), pp.
440
446
.
14.
Li
,
J. Q.
,
Gao
,
C. S.
,
Jing
,
W. X.
, and
Wei
,
P. X.
,
2017
, “
Dynamic Analysis and Control of Novel Moving Mass Flight Vehicle
,”
Acta Astronaut.
,
131
, pp.
36
44
.
15.
Han
,
J. Q.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
16.
Astolfi
,
A.
, and
Ortega
,
R.
,
2003
, “
Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
590
606
.
17.
Astolfi
,
A.
,
Karagiannis
,
D.
, and
Ortega
,
R.
,
2008
,
Nonlinear and Adaptive Control With Applications
,
Springer-Verlag
,
London
, pp.
276
309
.
18.
Tagne
,
G.
,
Talj
,
R.
, and
Charara
,
A.
,
2015
, “
Design and Validation of a Robust Immersion and Invariance Controller for the Lateral Dynamics of Intelligent Vehicles
,”
Control Eng. Pract.
,
40
, pp.
81
92
.
19.
Acosta
,
J. Á.
,
Ortega
,
R.
,
Astolfi
,
A.
, and Sarras, I.,
2008
, “
A Constructive Solution for Stabilization Via Immersion and Invariance: The Cart and Pendulum System
,”
Automatica
,
44
(
9
), pp.
2352
2357
.
20.
Bustan
,
D.
,
Sani
,
S. K. H.
, and
Pariz
,
N.
,
2014
, “Immersion, and Invariance,
Based Fault Tolerant Adaptive Spacecraft Attitude Control
,”
Int. J. Control Autom. Syst.
,
12
(
2
), pp.
333
339
.
You do not currently have access to this content.