This paper discusses the averaging, control authority, and vibrational control of mechanical control-affine systems with high-frequency, high-amplitude inputs. The inputs have different frequencies of the same order. This work is an extension of the existing averaging method for high-frequency mechanical systems with single-frequency inputs. Vibrational control authority of mechanical control-affine systems is introduced, and the effects of inputs' waveform and frequency on vibrational control authority are investigated. The results show that, in general, using multifrequency inputs may result in lower control authority of mechanical systems compared to single-frequency inputs, especially when using harmonic inputs. The results on vibrational control authority of the systems with multifrequency inputs are demonstrated using vibrational control of a horizontal pendulum with two inputs. This paper also discusses the averaging of multiple-time-scale control systems.

References

1.
Bogoliubov
,
N. N.
, and
Mitropolsky
,
Y. A.
,
1961
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
,
Hindustan Publishing Corporation
,
Delhi, India
.
2.
Mitropolsky
,
Y. A.
,
1967
, “
Averaging Method in Non-Linear Mechanics
,”
Int. J. Nonlinear Mech.
,
2
(
1
), pp.
69
96
.
3.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences
,
Springer-Verlag
,
New York
.
4.
Sanders
,
J. A.
, and
Verhulst
,
F.
,
1985
,
Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences
,
Springer-Verlag
,
New York
.
5.
Meerkov
,
S. M.
,
1980
, “
Principle of Vibrational Control: Theory and Applications
,”
IEEE Trans. Autom. Control, AC
,
25
(
4
), pp.
755
762
.
6.
Bellman
,
R. E.
,
Bentsman
,
J.
, and
Meerkov
,
S. M.
,
1986
, “
Vibrational Control of Nonlinear Systems: Vibrational Stabilizability
,”
IEEE Trans. Autom. Control
,
31
(
8
), pp.
710
716
.
7.
Bellman
,
R. E.
,
Bentsman
,
J.
, and
Meerkov
,
S. M.
,
1986
, “
Vibrational Control of Nonlinear Systems: Vibrational Controllability and Transient Behavior
,”
IEEE Trans. Autom. Control
,
31
(
8
), pp.
717
724
.
8.
Kapitza
,
P. L.
,
1965
, “
Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates
,”
Collected Papers of P. L. Kapitza
, Vol. 2,
P. L.
Kapitza
, and
D.
ter Haar
, ed.,
Pergamon
, Oxford, UK, pp.
714
725
.
9.
Hong
,
K. S.
,
2002
, “
An Open-Loop Control for Underactuated Manipulators Using Oscillatory Inputs: Steering Capability of an Unactuated Joint
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
469
480
.
10.
Bentsman
,
J.
, and
Hong
,
K. S.
,
1991
, “
Vibrational Stabilization of Nonlinear Parabolic Systems With Neumann Boundary Conditions
,”
IEEE Trans. Autom. Control
,
36
(
4
), pp.
501
507
.
11.
Bentsman
,
J.
,
Hong
,
K. S.
, and
Fakhfakh
,
J.
,
1991
, “
Vibrational Control of Nonlinear Time Lag Systems: Vibrational Stabilization and Transient Behavior
,”
Automatica
,
27
(
3
), pp.
491
500
.
12.
Bentsman
,
J.
, and
Hong
,
K. S.
,
1993
, “
Transient Behavior Analysis of Vibrationally Controlled Nonlinear Parabolic Systems With Neumann Boundary Conditions
,”
IEEE Trans. Autom. Control
,
38
(
10
), pp.
1603
1607
.
13.
Tahmasian
,
S.
, and
Woolsey
,
C. A.
,
2015
, “
A Control Design Method for Underactuated Mechanical Systems Using High Frequency Inputs
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
7
), p. 071004.
14.
Tahmasian
,
S.
, and
Woolsey
,
C. A.
,
2016
, “
Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging
,”
J. Nonlinear Sci.
,
27
(4), pp. 1193–1214.
15.
Bullo
,
F.
,
2002
, “
Averaging and Vibrational Control of Mechanical Systems
,”
SIAM J. Control Optim.
,
41
(
2
), pp.
542
562
.
16.
Blekhman
,
I. I.
,
2000
,
Vibrational Mechanics
,
World Scientific Publishing Co
,
Singapore
.
17.
Crouch
,
P. E.
,
1981
, “
Geometric Structures in Systems Theory
,”
IEE Proc. D (Control Theory Appl.)
,
128
(
5
), pp.
242
252
.
18.
Bullo
,
F.
, and
Lewis
,
A. D.
,
2005
,
Geometric Control of Mechanical Systems. Texts in Applied Mathematics
,
Springer
,
New York
.
19.
Weibel
,
S.
,
Baillieul
,
J.
, and
Kaper
,
T. J.
,
1995
, “
Small-Amplitude Periodic Motions of Rapidly Forced Mechanical Systems
,”
Conference on Decision and Control
(
CDC
), New Orleans, LA, Dec. 13–15, pp.
533
539
.
20.
Fidlin
,
A.
, and
Thomsen
,
J. J.
,
2008
, “
Nontrivial Effects of High-Frequency Excitation for Strongly Damped Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
43
(
7
), pp.
569
578
.
21.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Agrachev
,
A. A.
, and
Gamkrelidze
,
R. V.
,
1979
, “
The Exponential Representation of Flows and the Chronological Calculus
,”
Math. USSR: Sb.
,
35
(
6
), pp.
727
785
.
23.
Tahmasian
,
S.
,
Allen
,
D. W.
, and
Woolsey
,
C. A.
,
2016
, “
On Averaging and Input Optimization of High-Frequency Mechanical Control Systems
,”
J. Vib. Control
,
24
(5), pp. 937–955.
24.
Tahmasian
,
S.
,
Jafari
,
F.
, and
Woolsey
,
C. A.
,
2016
, “
On Vibrational Stabilization of a Horizontal Pendulum
,”
ASME
Paper No. DSCC2016-9675.
25.
Tsakalis
,
K. S.
, and
Ioannou
,
P. A.
,
1993
,
Linear Time-Varying Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.