Lifting up a cage with miners via a mining cable causes axial vibrations of the cable. These vibration dynamics can be described by a coupled wave partial differential equation-ordinary differential equation (PDE-ODE) system with a Neumann interconnection on a time-varying spatial domain. Such a system is actuated not at the moving cage boundary, but at a separate fixed boundary where a hydraulic actuator acts on a floating sheave. In this paper, an observer-based output-feedback control law for the suppression of the axial vibration in the varying-length mining cable is designed by the backstepping method. The control law is obtained through the estimated distributed vibration displacements constructed via available boundary measurements. The exponential stability of the closed-loop system with the output-feedback control law is shown by Lyapunov analysis. The performance of the proposed controller is investigated via numerical simulation, which illustrates the effective vibration suppression with the fast convergence of the observer error.

References

1.
Zhu
,
W.
, and
Zheng
,
N.
,
2008
, “
Exact Response of a Translating String With Arbitrarily Varying Length Under General Excitation
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031003
.
2.
Kaczmarczyk
,
S.
, and
Ostachowicz
,
W.
,
2003
, “
Transient Vibration Phenomena in Deep Mine Hoisting Cables—Part 1: Mathematical Model
,”
J. Sound Vib.
,
262
(
2
), pp.
219
244
.
3.
Zhu
,
W.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media With an Arbitrarily Varying Length
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
295
304
.
4.
Wang
,
J.
,
Pi
,
Y.
,
Hu
,
Y.
, and
Gong
,
X.
,
2017
, “
Modeling and Dynamic Behavior Analysis of a Coupled Multi-Cable Double Drum Winding Hoister With Flexible Guides
,”
Mech. Mach. Theory
,
108
, pp.
191
208
.
5.
Kaczmarczyk
,
S.
, and
Ostachowicz
,
W.
,
2003
, “
Transient Vibration Phenomena in Deep Mine Hoisting Cables—Part 2: Numerical Simulation of the Dynamic Response
,”
J. Sound Vib.
,
262
(
2
), pp.
245
289
.
6.
Nguyen
,
Q. C.
, and
Hong
,
K.-S.
,
2010
, “
Asymptotic Stabilization of a Nonlinear Axially Moving String by Adaptive Boundary Control
,”
J. Sound Vib.
,
329
(
22
), pp.
4588
4603
.
7.
Nguyen
,
Q. C.
, and
Hong
,
K.-S.
,
2012
, “
Simultaneous Control of Longitudinal and Transverse Vibrations of an Axially Moving String With Velocity Tracking
,”
J. Sound Vib.
,
331
(
13
), pp.
3006
3019
.
8.
Nguyen
,
Q. C.
, and
Hong
,
K.-S.
,
2012
, “
Transverse Vibration Control of Axially Moving Membranes by Regulation of Axial Velocity
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
1124
1131
.
9.
He
,
W.
, and
Ge
,
S. S.
,
2015
, “
Vibration Control of a Flexible String With Both Boundary Input and Output Constraints
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1245
1254
.
10.
He
,
W.
,
Zhang
,
S.
, and
Ge
,
S. S.
,
2014
, “
Adaptive Control of a Flexible Crane System With the Boundary Output Constraint
,”
IEEE Trans. Ind. Electron.
,
61
(
8
), pp.
4126
4133
.
11.
Zhang
,
S.
,
He
,
W.
, and
Ge
,
S. S.
,
2012
, “
Modeling and Control of a Nonuniform Vibrating String Under Spatiotemporally Varying Tension and Disturbance
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1196
1203
.
12.
Ge
,
S. S.
,
He
,
W.
,
How
,
B. V. E.
, and
Choo
,
Y. S.
,
2010
, “
Boundary Control of a Coupled Nonlinear Flexible Marine Riser
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1080
1091
.
13.
He
,
W.
, and
Ge
,
S. S.
,
2016
, “
Cooperative Control of a Nonuniform Gantry Crane With Constrained Tension
,”
Automatica.
,
66
, pp.
146
154
.
14.
Curtain
,
R.
, and
Morris
,
K.
,
2009
, “
Transfer Functions of Distributed Parameter Systems: A Tutorial
,”
Automatica
,
45
(
5
), pp.
1101
1116
.
15.
Sandilo
,
S. H.
, and
van Horssen
,
W. T.
,
2014
, “
On Variable Length Induced Vibrations of a Vertical String
,”
J. Sound Vib.
,
333
(
11
), pp.
2432
2449
.
16.
Zhu
,
W.
,
Ni
,
J.
, and
Huang
,
J.
,
2001
, “
Active Control of Translating Media With Arbitrarily Varying Length
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
347
358
.
17.
He
,
W.
,
Nie
,
S.
,
Meng
,
T.
, and
Liu
,
Y.-J.
,
2017
, “
Modeling and Vibration Control for a Moving Beam With Application in a Drilling Riser
,”
IEEE Trans. Control Syst. Technol.
,
25
(
3
), pp.
1036
1043
.
18.
He
,
W.
,
Ge
,
S. S.
, and
Huang
,
D.
,
2015
, “
Modeling and Vibration Control for a Nonlinear Moving String With Output Constraint
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp. 1886–1897.
19.
Krstic
,
M.
,
Guo
,
B.-Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
,
2008
, “
Output-Feedback Stabilization of an Unstable Wave Equation
,”
Automatica
,
44
(
1
), pp.
63
74
.
20.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
Singapore
.
21.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2014
, “
Compensation of Wave Actuator Dynamics for Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1555
1570
.
22.
Krstic
,
M.
,
2010
, “
Adaptive Control of an Anti-Stable Wave PDE
,”
Dynam. Cont. Dis. Ser. A
,
17
, pp.
853
882
.http://flyingv.ucsd.edu/papers/PDF/133.pdf
23.
Bresch-Pietri
,
D.
, and
Krstic
,
M.
,
2014
, “
Output-Feedback Adaptive Control of a Wave PDE with Boundary Anti-Damping
,”
Automatica
,
50
(
5
), pp.
1407
1415
.
24.
Krstic
,
M.
,
2009
, “
Compensating Actuator and Sensor Dynamics Governed by Diffusion PDEs
,”
Syst. Control Lett.
,
58
(
5
), pp.
372
377
.
25.
Krstic
,
M.
,
2009
, “
Compensating a String PDE in the Actuation or Sensing Path of an Unstable ODE
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1362
1368
.
26.
Hasan
,
A.
,
Aamo
,
O.
, and
Krstic
,
M.
,
2016
, “
Boundary Observer Design for Hyperbolic PDE-ODE Cascade Systems
,”
Automatica
,
68
, pp.
75
86
.
27.
Aamo
,
O.
,
2013
, “
Disturbance Rejection in 2 × 2 Linear Hyperbolic Systems
,”
IEEE Trans. Autom. Control
,
58
(
5
), pp.
1095
1106
.
28.
Ren
,
B.
,
Wang
,
J.-M.
, and
Krstic
,
M.
,
2013
, “
Stabilization of an ODE–Schrödinger Cascade
,”
Syst. Control Lett.
,
62
(
6
), pp.
503
510
.
29.
Tang
,
S.
, and
Xie
,
C.
,
2011
, “
Stabilization for a Coupled PDE-ODE Control System
,”
J. Franklin Inst.
,
348
(
8
), pp.
2142
2155
.
30.
Cai
,
X.
, and
Krstic
,
M.
,
2015
, “
Nonlinear Control Under Wave Actuator Dynamics With Time-and State-Dependent Moving Boundary
,”
Int. J. Rob. Nonlinear
,
25
(
2
), pp.
222
251
.
31.
Cai
,
X.
, and
Krstic
,
M.
,
2016
, “
Nonlinear Stabilization Through Wave PDE Dynamics With a Moving Uncontrolled Boundary
,”
Automatica
,
68
, pp.
27
38
.
32.
Susto
,
G. A.
, and
Krstic
,
M.
,
2010
, “
Control of PDE–ODE Cascades With Neumann Interconnections
,”
J. Franklin Inst.
,
347
(
1
), pp.
284
314
.
33.
Tang
,
S.
, and
Xie
,
C.
,
2011
, “
State and Output Feedback Boundary Control for a Coupled PDE–ODE System
,”
Syst. Control Lett.
,
60
(
8
), pp.
540
545
.
34.
Zhou
,
Z.
, and
Tang
,
S.
,
2012
, “
Boundary Stabilization of a Coupled Wave-ODE System With Internal Anti-Damping
,”
Int. J. Control
,
85
(
11
), pp.
1683
1693
.
35.
McIver
,
D. B.
,
1973
, “
Hamilton's Principle for Systems of Changing Mass
,”
J. Eng. Math.
,
7
(
3
), pp.
249
261
.
36.
Bresch-Pietri
,
D.
, and
Krstic
,
M.
,
2014
, “
Adaptive Output Feedback for Oil Drilling Stick-Slip Instability Modeled by Wave PDE With Anti-damped Dynamic Boundary
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp. 386–391.
37.
Krstic
,
M.
,
2009
,
Delay Compensation for Nonlinear, Adaptive, and PDE Systems
,
Birkhäuser
, Boston, MA.
38.
Roman
,
C.
,
Bresch-Pietri
,
D.
,
Cerpa
,
E.
,
Prieur
,
C.
, and
Sename
,
O.
,
2016
, “
Backstepping Observer Based-Control for an Anti-Damped Boundary Wave PDE in Presence of In-Domain Viscous Damping
,”
55th Conference on Decision and Control
(
CDC
), Las Vegas, NV, Dec. 12–14, pp. 549–554.
39.
Wang
,
J.
,
Krstic
,
M.
, and
Pi
,
Y.
, “
Control of a 2 × 2 Coupled Linear Hyperbolic System Sandwiched Between Two ODEs
,”
Int. J. Robust Nonlinear
(to appear).
40.
Krstic
,
M.
,
2011
, “
Dead-Time Compensation for Wave/String PDEs
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031004
.
You do not currently have access to this content.